Research Article
BibTex RIS Cite
Year 2023, Volume: 12 Issue: 3, 157 - 165, 31.12.2023
https://doi.org/10.54187/jnrs.1367114

Abstract

References

  • B. C. Dhage, metric space and mappings with fixed point, Bulletin of the Calcutta Mathematical Society 84 (1992) 329-336.
  • Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis 7 (2) (2006) 289-297.
  • S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Matematiqki Vesnik 64 (3) (2012) 258-266.
  • S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1) (1993) 5-11.
  • A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalised metric spaces, Publicationes Mathematicae Debrecen 57 (1-2) (2000) 31-37.
  • A. Das, A. Kundu, T. Bag, A new approach to generalize metric functions, International Journal of Nonlinear Analysis and Applications 14 (3) (2023) 279-298.
  • L. A. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338-353.
  • I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (5) (1975) 326-334.
  • L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis 332 (2) (2007) 1468-1476.
  • N. Hussain, S. Khaleghizadeh, P. Salimi, A. A. N. Abdou, A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces, Abstract and Applied Analysis 2014 (2014) Article ID 690139 16 pages.
  • A. Das, T. Bag, A generalization to parametric metric spaces, International Journal of Nonlinear Analysis and Applications 14 (1) (2023) 229-244.
  • A. Das, T. Bag, A study on parametric S-metric spaces, Communications in Mathematics and Applications 13 (3) (2022) 921-933.
  • A. Das, T. Bag, A survey on Branciari metric spaces, Communications in Mathematics and Applications 14 (2) (2023) 1051-1112.
  • W. Kirk, N. Shahzad, Fixed point theory in distance spaces, 1th Edition, Springer, Switzerland, 2014.
  • M. E. Gordji, M. Rameni, M. De La Sen, Y. Je Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2) (2017) 569-578.
  • S. M. A. Khatami, M. Mirzavaziri. Yet another generalization of the notion of a metric space, (2020) 7 pages https://arxiv.org/abs/2009.00943.
  • E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Vol. 8 of Trends in Logic, Springer, Dordrecht, 2000.
  • S. Y. He, L. H. Xie, P. F. Yan, On $*$-metric spaces, Filomat 36 (18) (2022) 6173-6185.
  • A. H. Frink,Distance functions and the metrization problem, Bulletin of the American Mathematical Society 43 (1937) 133-142.
  • V. W. Niemytski, On the ``Third axiom of metric space'', Transactions of the American Mathematical Society 29 (3) (1927) 507-513.
  • W. A. Wilson, On semi-metric spaces, American Journal of Mathematics 53 (2) (1931) 361-373.

Some new results on $\star$-metric spaces

Year 2023, Volume: 12 Issue: 3, 157 - 165, 31.12.2023
https://doi.org/10.54187/jnrs.1367114

Abstract

The concept of $\star$-metric, based on the relaxation of triangle inequality of metric axioms by using a t-definer, was introduced by Khatami and Mirzavaziri. This paper extends and generalizes some well-known results of classical metric space. Considering the definition of $\star$-metric space, it studies the notion of a closed ball. The paper proves some results related to closed sets, convergent sequences, Cauchy sequences, and the diameter of a set. This paper contains the study on the metrizability of $\star$-metric space and provides an alternative approach to the proof of metrizability for $\star$-metric space using the famous `Niemytski and Wilson's metrization theorem'.

References

  • B. C. Dhage, metric space and mappings with fixed point, Bulletin of the Calcutta Mathematical Society 84 (1992) 329-336.
  • Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis 7 (2) (2006) 289-297.
  • S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Matematiqki Vesnik 64 (3) (2012) 258-266.
  • S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1) (1993) 5-11.
  • A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalised metric spaces, Publicationes Mathematicae Debrecen 57 (1-2) (2000) 31-37.
  • A. Das, A. Kundu, T. Bag, A new approach to generalize metric functions, International Journal of Nonlinear Analysis and Applications 14 (3) (2023) 279-298.
  • L. A. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338-353.
  • I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (5) (1975) 326-334.
  • L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis 332 (2) (2007) 1468-1476.
  • N. Hussain, S. Khaleghizadeh, P. Salimi, A. A. N. Abdou, A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces, Abstract and Applied Analysis 2014 (2014) Article ID 690139 16 pages.
  • A. Das, T. Bag, A generalization to parametric metric spaces, International Journal of Nonlinear Analysis and Applications 14 (1) (2023) 229-244.
  • A. Das, T. Bag, A study on parametric S-metric spaces, Communications in Mathematics and Applications 13 (3) (2022) 921-933.
  • A. Das, T. Bag, A survey on Branciari metric spaces, Communications in Mathematics and Applications 14 (2) (2023) 1051-1112.
  • W. Kirk, N. Shahzad, Fixed point theory in distance spaces, 1th Edition, Springer, Switzerland, 2014.
  • M. E. Gordji, M. Rameni, M. De La Sen, Y. Je Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2) (2017) 569-578.
  • S. M. A. Khatami, M. Mirzavaziri. Yet another generalization of the notion of a metric space, (2020) 7 pages https://arxiv.org/abs/2009.00943.
  • E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Vol. 8 of Trends in Logic, Springer, Dordrecht, 2000.
  • S. Y. He, L. H. Xie, P. F. Yan, On $*$-metric spaces, Filomat 36 (18) (2022) 6173-6185.
  • A. H. Frink,Distance functions and the metrization problem, Bulletin of the American Mathematical Society 43 (1937) 133-142.
  • V. W. Niemytski, On the ``Third axiom of metric space'', Transactions of the American Mathematical Society 29 (3) (1927) 507-513.
  • W. A. Wilson, On semi-metric spaces, American Journal of Mathematics 53 (2) (1931) 361-373.
There are 21 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Abhishikta Das 0000-0002-2860-424X

Tarapada Bag 0000-0002-8834-7097

Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Das, A., & Bag, T. (2023). Some new results on $\star$-metric spaces. Journal of New Results in Science, 12(3), 157-165. https://doi.org/10.54187/jnrs.1367114
AMA Das A, Bag T. Some new results on $\star$-metric spaces. JNRS. December 2023;12(3):157-165. doi:10.54187/jnrs.1367114
Chicago Das, Abhishikta, and Tarapada Bag. “Some New Results on $\star$-Metric Spaces”. Journal of New Results in Science 12, no. 3 (December 2023): 157-65. https://doi.org/10.54187/jnrs.1367114.
EndNote Das A, Bag T (December 1, 2023) Some new results on $\star$-metric spaces. Journal of New Results in Science 12 3 157–165.
IEEE A. Das and T. Bag, “Some new results on $\star$-metric spaces”, JNRS, vol. 12, no. 3, pp. 157–165, 2023, doi: 10.54187/jnrs.1367114.
ISNAD Das, Abhishikta - Bag, Tarapada. “Some New Results on $\star$-Metric Spaces”. Journal of New Results in Science 12/3 (December 2023), 157-165. https://doi.org/10.54187/jnrs.1367114.
JAMA Das A, Bag T. Some new results on $\star$-metric spaces. JNRS. 2023;12:157–165.
MLA Das, Abhishikta and Tarapada Bag. “Some New Results on $\star$-Metric Spaces”. Journal of New Results in Science, vol. 12, no. 3, 2023, pp. 157-65, doi:10.54187/jnrs.1367114.
Vancouver Das A, Bag T. Some new results on $\star$-metric spaces. JNRS. 2023;12(3):157-65.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).