Research Article
BibTex RIS Cite

Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry

Year 2025, Volume: 14 Issue: 1, 37 - 47, 30.04.2025
https://doi.org/10.54187/jnrs.1654005

Abstract

Pesticides enhance crop productivity but leave residues that threaten the health and the environment, necessitating sensitive analytical methods to detect widely used compounds like pirimicarb. This study focuses on optimizing the analysis of pirimicarb and its metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Key instrumental parameters including interface temperature, desolvation line temperature, heat block temperature, column oven temperature, collision-induced dissociation (CID) gas pressure, and interface voltage were systematically optimized to enhance method sensitivity and reliability. Among the tested conditions, interface temperatures of 150 °C and 400 °C provided the highest signal intensity for pirimicarb, while pirimicarb-desmethyl responded best at 250 °C, and pirimicarb-desmethyl-formamido showed maximum signals at 150 °C and 300 °C. For desolvation line temperature, 150 °C yielded the highest intensities for pirimicarb and pirimicarb-desmethyl, whereas 200 °C was optimal for pirimicarb-desmethyl-formamido. Pirimicarb exhibited peak response at a heat block temperature of 300 °C, while pirimicarb-desmethyl showed comparable intensities at 100, 200, and 350 °C, and pirimicarb-desmethyl-formamido responded best at 100 and 200 °C. Column oven temperatures of 40 °C and 50 °C enhanced the response for pirimicarb, with pirimicarb-desmethyl and pirimicarb-desmethyl-formamido showing optimal intensities at 50 °C. Additionally, a CID gas pressure of 270 kPa and interface voltage of 4.0 kV produced the highest ionization efficiency across all analytes. The results demonstrated that specific parameter adjustments significantly improved ionization efficiency and signal intensity, leading to a more robust analytical method. This study underscores the importance of systematic parameter optimization in LC-MS/MS for accurate pesticide residue detection and provides a framework for future research on other pesticide groups.

Supporting Institution

Tokat Gaziosmanpaşa University Scientific Research Projects Coordination Unit

Project Number

Grant Project No: 2023/96

References

  • O. Tiryaki, R. Canhilal, S. Horuz, The use of pesticides and their risks, Erciyes University Journal of Institue of Science and Technology 26 (2) (2010) 154-169.
  • R. J. Hillocks, Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture, Crop Protection 31 (1) (2012) 85-93.
  • V. P. Kalyabina, E. N. Esimbekova, K. V. Kopylova, V. A. Kratasyuk, Pesticides: formulants, distribution pathways and effects on human health–a review. Toxicology Reports 8 (2021) 1179-1192.
  • A. Sabarwal, K. Kumar, R. P. Singh, Hazardous effects of chemical pesticides on human health–cancer and other associated disorders, Environmental Toxicology and Pharmacology 63 (2018) 103-114.
  • T. Balkan, Ö. Yılmaz, Efficacy of some washing solutions for removal of pesticide residues in lettuce, Beni-Suef University Journal of Basic and Applied Sciences 11 (2022) 143.
  • Y. A. Mohamed, M. H. Meabed, K. M. Abougaba, F. A. Sayed, N. N. Welson, R. E. Ibrahim, A comparative study: rural versus urban children as regard exposure to organophosphorus pesticides using cholinesterase enzyme activity, Beni-Suef University Journal of Basic and Applied Sciences 11 (2022) 6.
  • G. S. Nunes, P. Skládal, H. Yamanaka, D. Barceló, Determination of carbamate residues in crop samples by cholinesterase-based biosensors and chromatographic techniques, Analytica Chimica Acta 362 (1) (1998) 59-68.
  • C. Soler, B. Hamilton, A. Furey, K. J. James, J. Mañes, Y. Picó, Optimization of LC–MS/MS using triple quadrupole mass analyzer for the simultaneous analysis of carbosulfan and its main metabolites in oranges, Analytica Chimica Acta 571 (1) (2006) 1-11.
  • S. W. Chung, B. T. Chan, Validation and use of a fast sample preparation method and liquid chromatography–tandem mass spectrometry in analysis of ultra-trace levels of 98 organophosphorus pesticide and carbamate residues in a total diet study involving diversified food types, Journal of Chromatography A 1217 (29) (2010) 4815-4824.
  • Z. N. Garba, A. K. Abdullahi, A. Haruna, S. A. Gana, Risk assessment and the adsorptive removal of some pesticides from synthetic wastewater: a review, Beni-Suef University Journal of Basic and Applied Sciences 10 (2021) 19.
  • M. Liu, Y. Hashi, Y. Song, J. M. Lin, Simultaneous determination of carbamate and organophosphorus pesticides in fruits and vegetables by liquid chromatography–mass spectrometry, Journal of Chromatography A 1097 (1-2) (2005) 183-187.
  • L. Ma, L. Zhao, J. Wang, C. Pan, C. Liu, Y. Wang, Q. Ding, Y. Feng, H. Zhou, L. Jia, Determination of 12 carbamate insecticides in typical vegetables and fruits by rapid multi-plug filtration cleanup and ultra-performance liquid chromatography/tandem mass spectrometry detection, Journal of Chromatographic Science 58 (2) (2020) 109-116.
  • S. Ghosh, S. S. AlKafaas, C. Bornman, W. Apollon, A. M. Hussien, A. E. Badawy, H. Bedair, The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review, Beni-Suef University Journal of Basic and Applied Sciences 11 (2022) 73.
  • V. Storck, D. G. Karpouzas, F. Martin-Laurent. Towards a better pesticide policy for the European Union, Science of the Total Environment 575 (2017) 1027-1033.
  • European Union Pesticide residues MRLs Database (2024), https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls/details?lg_code=EN&pest_res_id_list=169&product_id_list=, Accessed 9 Dec 2024.
  • T. Balkan, Ö. Yılmaz, Method validation, residue and risk assessment of 260 pesticides in some leafy vegetables using liquid chromatography coupled to tandem mass spectrometry, Food Chemistry 384 (2022) 132516.
  • T. Balkan, Ö. Yılmaz, Investigation of insecticide residues in potato grown in Türkiye by LC-MS/MS and GC-MS and health risk assessment, Turkish Journal of Entomology 46 (4) (2022) 481-500.
  • T. Balkan, H. Karaağaçlı, Determination of 301 pesticide residues in tropical fruits imported to Turkey using LC–MS/MS and GC-MS, Food Control 147 (2023) 109576.
  • M. Keklik, E. Odabas, O. Golge, B. Kabak. Pesticide residue levels in strawberries and human health risk assessment, Journal of Food Composition and Analysis 137 Part A (2025) 106943.
  • D. G. Lee, J. W. Baek, H. R. Eun, Y. J. Lee, S. M. Kim, T. G. Min, Y. W. Cho, Y. H. Lee, Y. Shin, Evaluation of pencycuron residue dynamics in eggplant using LC-MS/MS and establishment of pre-harvest residue limits, Foods 13 (23) (2024) 3754.
  • F. Malhat, A. Hegazy, D. A. Barakat, E. D. Ibrahim, M. Hussien, E. S. Saber, A. N. Saber, Sulfoxaflor residues and exposure risk assessment in grape under Egyptian field conditions, Environmental Science and Pollution Research 31(39) (2024) 52038-52048.
  • F. Malhat, A. N. Saber, A. Hegazy, E. S. Saber, S. Heikal, H. Elgammal, M. Hussien, Decline pattern and dietary risk assessment of spinetoram in grapes under Egyptian field conditions, Environmental Monitoring and Assessment 196 (2024) 873.
  • S. Majumder, P. Mishra, J. K. N. Pandey, S. Sharma, S. Maurya, A. K. Singh, K. K. Pandey, T. K. Behera, Optimisation and application of the multi-residue analysis method for detection of 50 pesticides in cabbage by using LC-MS/MS-QuEChERS, International Journal of Environmental Analytical Chemistry (2023), https://doi.org/10.1080/03067319.2024.2313004, Accessed 1 Mar 2025.
  • R. Kauser, S. K. C. Padavala, V. Palanivel, Optimization of LC-MS/MS method for the simultaneous determination of metformin and rosiglitazone in human plasma with Box-Behnken design, International Journal of Applied Pharmaceutics 16 (6) (2024) 98-105.
  • G. Moreiras, J. M. Leão, A. Gago-Martínez, Design of experiments for the optimization of electrospray ionization in the LC‐MS/MS analysis of ciguatoxins, Journal of Mass Spectrometry 53 (11) (2018) 1059-1069.
  • L. Z. Meneghini, C. Junqueira, A. S. Andrade, F. R. Salazar, C. F. Codevilla, P. E. Fröehlich, A. M. Bergold, Chemometric evaluation of darifenacin hydrobromide using a stability-indicating reversed-phase LC method, Journal of Liquid Chromatography & Related Technologies 34 (18) (2011) 2169-2184.
There are 26 citations in total.

Details

Primary Language English
Subjects Quality Assurance, Chemometrics, Traceability and Metrological Chemistry
Journal Section Articles
Authors

Mehmet Kızılarslan 0000-0002-6739-6551

Kenan Kara 0000-0003-0439-5639

Tarık Balkan 0000-0003-4756-4842

Project Number Grant Project No: 2023/96
Publication Date April 30, 2025
Submission Date March 8, 2025
Acceptance Date April 16, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Kızılarslan, M., Kara, K., & Balkan, T. (2025). Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Journal of New Results in Science, 14(1), 37-47. https://doi.org/10.54187/jnrs.1654005
AMA Kızılarslan M, Kara K, Balkan T. Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. JNRS. April 2025;14(1):37-47. doi:10.54187/jnrs.1654005
Chicago Kızılarslan, Mehmet, Kenan Kara, and Tarık Balkan. “Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry”. Journal of New Results in Science 14, no. 1 (April 2025): 37-47. https://doi.org/10.54187/jnrs.1654005.
EndNote Kızılarslan M, Kara K, Balkan T (April 1, 2025) Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Journal of New Results in Science 14 1 37–47.
IEEE M. Kızılarslan, K. Kara, and T. Balkan, “Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry”, JNRS, vol. 14, no. 1, pp. 37–47, 2025, doi: 10.54187/jnrs.1654005.
ISNAD Kızılarslan, Mehmet et al. “Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry”. Journal of New Results in Science 14/1 (April2025), 37-47. https://doi.org/10.54187/jnrs.1654005.
JAMA Kızılarslan M, Kara K, Balkan T. Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. JNRS. 2025;14:37–47.
MLA Kızılarslan, Mehmet et al. “Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry”. Journal of New Results in Science, vol. 14, no. 1, 2025, pp. 37-47, doi:10.54187/jnrs.1654005.
Vancouver Kızılarslan M, Kara K, Balkan T. Optimization of Pirimicarb and Its Metabolites by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. JNRS. 2025;14(1):37-4.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).