Research Article
BibTex RIS Cite

SPECTROSCOPIC INVESTIGATION OF ARGON DC GLOW DISCHARGE IN PLASMA MEDIUM

Year 2023, , 19 - 33, 31.05.2023
https://doi.org/10.56850/jnse.1179169

Abstract

In this study, UV-VIS-NIR (Ultraviolet Visible Near-Infrared) spectra emitted from Argon Glow discharge plasma in a low vacuum were recorded with a high-resolution Czerny-Turner type spectrometer. Argon plasma was produced at a pressure of 5mTorr and with a voltage of 584 V. Argon plasma was produced between two parallel stainless steel plates anode and cathode with a diameter of 15 cm, a thickness of 0.8 cm, and a distance of 13 cm between them. The radiative and collisional processes of the Argon plasma medium were modeled by the PrismSPECT atomic physics software (Software). The distributions of ion densities were calculated using the Saha-Boltzmann equation. The intensity of the excited energy levels of Ar(I) and Ar (II) ions were calculated in the electron temperature range of (0.4-3.5eV) and the mass density of (10-4-10-1gr/cm3). The UV-Visible-NIR spectra were simulated and compared with experimental spectra. The ratios of the intensities of the ArII/ArI (1s22s22p63s23p44f1/1s22s22p63s23p54p1) spectral lines were obtained for different plasma temperatures and densities. The temperature of the argon plasma was obtained from the spectral line intensity ratios.

Supporting Institution

TÜBİTAK UME

Project Number

G2ED-E1-02-I.

References

  • Adrain, R. S. (1982). Some industrial uses of laser induced plasmas. In Koebner, H., Industrial Applications of Lasers, Wiley, New York.
  • Bings, N. H., Bogaerts, A., Broekaert, J. A. C. (2008). “Atomic Spectroscopy”, Analytical Chemistry, 80, 4317-4347.
  • Bouchikhi, A., Hamid, A. (2010). “2D DC Subnormal Glow Discharge in Argon”. Plasma Science and Technology, 12, 1.
  • Cowan, R. D. (1981). The Theory of Atomic Structure an Spectra, Univ. of California Press, Berkeley.
  • Florian, J., Merbahi, N., Wattieaux, G., Plewa, J. M., and Yousfi, M. (2004). “Comparative Studies of Double Dielectric Barrier Discharge and Microwave Argon Plasma Jets at Atmospheric Pressure for Biomedical Applications”. IEEE Transactions on Plasma Science, 43,3332-3338.
  • Goktas, H., Demir, A., Kacar, E., Hegazy, H., Turan, R., Oke, G., Seyhan, A. (2007). “Spectroscopic Measurements of Electron Temperature and Electron Density in Electron Beam Plasma Generator Based on Collisional Radiative Model”. Spectroscopy Letters, 40, 183-192.
  • Hutchinson, I. H., 2002. Principles of Plasma Diagnostics, 2nd Ed., Cambridge University Press.
  • Jung, C. O., Chi, K. K., Hwang, B. G., Moon, J. T., Lee, M. Y., Lee, J. G. (1999). “Advanced plasma technology in microelectronics”. Thin Solid Films, 341,112-119.
  • McWhirter, R. W. P. (1965). Plasma Diagnostics Techniques, New York: Academic Press.
  • N. St. J., Braithwaite. (2000). “Introduction to gas discharges”. J. Plasma Sources Sci. Technol, 9, 517–527. NIST: Atomic Spectra Database. (September 2021). https://www.nist.gov/pml/atomic-spectra-database.
  • Park, B. J., Lee, D. H., Park, J. C. (2003). “Sterilization using a microwave-induced argon plasma system at atmospheric pressure”. Physics of Plasmas, 10, 4539-4544.
  • PrismSPECT software. (September 2021). https://www.prism-cs.com/Software/PrismSPECT/overview.html.
  • Rafatov, I. R., Akbar, D. & Bilikmen, S. (2007). “Modelling of non-uniform DC driven glow discharge in argon gas”. Plasma Science and Technology, A367, 114-119.
  • Sahu, B. B., Jin, S. B., Han, J. G. G. (2017). “Development and characterization of a multi-electrode cold atmospheric pressure DBD plasma jet aiming plasma application”. Journal of Analytical Atomic Spectrometry, 32, 782-795.
  • Stankov M. N., Petković M. D., Marković V. Lj., Stamenković S. N., Jovanović A. P. (2015). “The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon”. Chinese Physics Letters, 32, 025101.

PLAZMA ORTAMINDA ARGON DC GLOW DEŞARJININ SPEKTROSKOPİK İNCELENMESİ

Year 2023, , 19 - 33, 31.05.2023
https://doi.org/10.56850/jnse.1179169

Abstract

Bu çalışmada, düşük vakum ortamında Argon plazmasından yayılan UV-VIS-NIR (Morötesi-Görünür-Yakın Kızılaltı) spektrumları, yüksek çözünürlüklü bir Czerny-Turner tipi spektrometre ile kaydedilmiştir. Argon plazması, 5 mTorr basınç ve 584 V voltaj parametreleri kullanılarak elde edilmiştir. Argon plazması, 15 cm çapında, 0.8 cm kalınlığında ve aralarında 13 cm mesafe bulunan iki paralel paslanmaz çelik levha anot ve katot arasında üretilmiştir. Argon Glow discharge plazmasının ışınımsal ve çarpışma süreçleri, PrismSPECT atomic physics yazılımı ile modellendi. Ar(I) ve Ar(II) iyonlarının uyarılmış enerji seviyelerinin yoğunlukları, elektron sıcaklık aralığı (0.4-3.5eV) ve kütle yoğunluk aralıkları (10-4-10-1gr/cm3) seçilerek Saha-Boltzmann denklemi aracılığıyla hesaplandı. UV-Visible-NIR spektrumları PrismSPECT atomic physics yazılımı ile modellendi ve deneysel spektrumlar ile karşılaştırıldı. ArII/ArI (1s22s22p63s23p44f1/1s22s22p63s23p54p1) spektral çizgi yoğunluk oranı farklı plazma sıcaklıkları ve yoğunlukları için elde edildi. Argon plazmasının sıcaklığı, PrismSPECT atomic physics yazılımı ile modellenen spektroskopik çizgi yoğunluk oranlarından yaklaşık olarak elde edildi.

Project Number

G2ED-E1-02-I.

References

  • Adrain, R. S. (1982). Some industrial uses of laser induced plasmas. In Koebner, H., Industrial Applications of Lasers, Wiley, New York.
  • Bings, N. H., Bogaerts, A., Broekaert, J. A. C. (2008). “Atomic Spectroscopy”, Analytical Chemistry, 80, 4317-4347.
  • Bouchikhi, A., Hamid, A. (2010). “2D DC Subnormal Glow Discharge in Argon”. Plasma Science and Technology, 12, 1.
  • Cowan, R. D. (1981). The Theory of Atomic Structure an Spectra, Univ. of California Press, Berkeley.
  • Florian, J., Merbahi, N., Wattieaux, G., Plewa, J. M., and Yousfi, M. (2004). “Comparative Studies of Double Dielectric Barrier Discharge and Microwave Argon Plasma Jets at Atmospheric Pressure for Biomedical Applications”. IEEE Transactions on Plasma Science, 43,3332-3338.
  • Goktas, H., Demir, A., Kacar, E., Hegazy, H., Turan, R., Oke, G., Seyhan, A. (2007). “Spectroscopic Measurements of Electron Temperature and Electron Density in Electron Beam Plasma Generator Based on Collisional Radiative Model”. Spectroscopy Letters, 40, 183-192.
  • Hutchinson, I. H., 2002. Principles of Plasma Diagnostics, 2nd Ed., Cambridge University Press.
  • Jung, C. O., Chi, K. K., Hwang, B. G., Moon, J. T., Lee, M. Y., Lee, J. G. (1999). “Advanced plasma technology in microelectronics”. Thin Solid Films, 341,112-119.
  • McWhirter, R. W. P. (1965). Plasma Diagnostics Techniques, New York: Academic Press.
  • N. St. J., Braithwaite. (2000). “Introduction to gas discharges”. J. Plasma Sources Sci. Technol, 9, 517–527. NIST: Atomic Spectra Database. (September 2021). https://www.nist.gov/pml/atomic-spectra-database.
  • Park, B. J., Lee, D. H., Park, J. C. (2003). “Sterilization using a microwave-induced argon plasma system at atmospheric pressure”. Physics of Plasmas, 10, 4539-4544.
  • PrismSPECT software. (September 2021). https://www.prism-cs.com/Software/PrismSPECT/overview.html.
  • Rafatov, I. R., Akbar, D. & Bilikmen, S. (2007). “Modelling of non-uniform DC driven glow discharge in argon gas”. Plasma Science and Technology, A367, 114-119.
  • Sahu, B. B., Jin, S. B., Han, J. G. G. (2017). “Development and characterization of a multi-electrode cold atmospheric pressure DBD plasma jet aiming plasma application”. Journal of Analytical Atomic Spectrometry, 32, 782-795.
  • Stankov M. N., Petković M. D., Marković V. Lj., Stamenković S. N., Jovanović A. P. (2015). “The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon”. Chinese Physics Letters, 32, 025101.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Esra Okumuş 0000-0002-6297-0446

Project Number G2ED-E1-02-I.
Early Pub Date May 26, 2023
Publication Date May 31, 2023
Published in Issue Year 2023

Cite

APA Okumuş, E. (2023). SPECTROSCOPIC INVESTIGATION OF ARGON DC GLOW DISCHARGE IN PLASMA MEDIUM. Journal of Naval Sciences and Engineering, 19(1), 19-33. https://doi.org/10.56850/jnse.1179169