Research Article
BibTex RIS Cite

THERMAL ANALYSIS OF XLPE INSULATED SUBMARINE CABLES FOR DIFFERENT LOADING CONDITIONS

Year 2023, , 35 - 51, 31.05.2023
https://doi.org/10.56850/jnse.1252303

Abstract

Submarine cables are critical assets that play an indispensable role in interconnected power systems, particularly in cross-sea energy transmission and offshore wind turbines. Their importance is further accentuated in exigent situations such as natural disasters and war, which emphasize the need for secure, reliable and uninterrupted energy supply. Furthermore, the investment and operating costs of submarine cables are relatively higher than other power system equipment, making it essential to operate them under the rated operating conditions to prevent possible faults and ensure power system stability. As thermal stress can lead to damage of cable insulation, it is an essential parameter to consider. Overloading increases thermal stress, resulting in rapid aging of the cable insulation and a shorter cable lifetime. Therefore, it is imperative to determine the maximum conductor temperatures and current carrying capacities of submarine cables under varying loading rates and ambient conditions using thermal analysis. In this study, thermal analyses are carried out for a three-phase, 220 kV HVAC, XLPE insulated submarine cable under different loading conditions. The findings demonstrate that the maximum temperature, current carrying capacity, and total losses of the cable are significantly impacted by loading rate, phase imbalance, and seawater temperature.

References

  • COMSOL. (2023). Modeling Cables in COMSOL®: An Electromagnetics Tutorial Series. https://www.comsol.com/model/cable-tutorial-series-43431
  • Hu, M., Xie, S., Zhang, J., & Ma, Z. (2014). Desing selection of DC & AC submarine power cable for offshore wind mill. China International Conference on Electricity Distribution, CICED, 2014-December, 1675–1679. https://doi.org/10.1109/CICED.2014.6991991
  • IEEE, 1120-2004. (2004). 1120-2004 IEEE Guide for the Planning, Design, Installation, and Repair of Submarine Power Cable Systems.
  • Keskin Arabul, F., Arabul, A. Y., Kumru, C. F., & Boynuegri, A. R. (2017). Providing energy management of a fuel cell–battery–wind turbine–solar panel hybrid off grid smart home system. International Journal of Hydrogen Energy, 42(43). https://doi.org/10.1016/j.ijhydene.2017.02.204
  • Lldstad, E. (1994). World Record HVDC Submarine Cables. IEEE Electrical Insulation Magazine, 10(4), 64–67. https://doi.org/10.1109/57.298131
  • Mei, W., Pan, W., Chen, T., Song, G., & Di, J. (2017). Research and design of DC500kV optical fiber composite submarine cable. 4th IEEE International Conference on Engineering Technologies and Applied Sciences, ICETAS 2017, 2018-January, 1–6. https://doi.org/10.1109/ICETAS.2017.8277901
  • Ou, X., Xu, W., Zang, Y., Wang, H., Wu, H., Lv, A., & Zhou, Z. (2022). Mechanical analysis of 500 kV oil-filled submarine power cable in anchor and blade damage based on Finite element method. IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2022-October, 1068–1072. https://doi.org/10.1109/IAEAC54830.2022.9929551
  • Submarine Cable Almanac. (2021). Global Submarine Cable Network. https://www.submarinecablemap.com/
  • Takeshita, H., Nakamura, K., Matsuo, Y., Inoue, T., Masuda, D., Hiwatashi, T., Hosokawa, K., Inada, Y., & de Gabory, E. L. T. (2022). Demonstration of Uncoupled 4-Core Multicore Fiber in Submarine Cable Prototype with Integrated Multicore EDFA. Journal of Lightwave Technology. https://doi.org/10.1109/JLT.2022.3195190
  • Yu, X., Zhang, S., Peng, X., Feng, B., Yu, S., Zhu, W., & Deng, J. (2022). Simulation Study on Steady-State Ampacity of ±400 kV J-tube DC Submarine Cable. Proceedings - 2022 4th International Conference on Electrical Engineering and Control Technologies, CEECT 2022, 546–551. https://doi.org/10.1109/CEECT55960.2022.10030564
  • Zhang, H., XIE, S., Hu, M., Zhang, X., Ling, Z., Zhan, H., & Jing, Y. (2021). Development Prospects of High Economy XLPE Insulation HVDC Submarine Cable. 1046–1055. https://doi.org/10.1049/ICP.2021.2223

FARKLI YÜKLEME ŞARTLARI İÇİN XLPE İZOLELİ DENİZALTI KABLOLARININ ISIL ANALİZİ

Year 2023, , 35 - 51, 31.05.2023
https://doi.org/10.56850/jnse.1252303

Abstract

Denizaltı kabloları, enterkonnekte güç sistemlerinin en önemli ve kıymetli varlıklarından biri olup hem deniz aşırı enerji iletiminde hem de açık deniz rüzgar türbinlerinde yaygın biçimde kullanılmaktadır. Bu kablolar, özellikle doğal afet ve savaş gibi kritik ve stratejik durumlarda daha da önem kazanmaktadır. Ayrıca denizaltı kablolarının hem yatırım ve hem de işletme maliyetleri diğer güç sistem ekipmanlarına kıyasla ciddi derecede yüksektir. Bu sebeplerden ötürü, kablonun nominal işletme şartları içerisinde çalıştırılması ve böylelikle olası arızaların engellenmesi güç sistem kararlılığının sağlanması bakımından elzemdir. Kablo izolasyonun zarar görmemesi için dikkat edilmesi gereken en önemli parametreler arasında ısıl zorlanma gelmektedir. Aşırı yüklenmeye bağlı artan ısıl zorlanmayla kablo yalıtkanı daha hızlı yaşlanmakta ve kablonun işletme ömrü azalmaktadır. Bu nedenle, denizaltı kablolarının farklı yüklenme oranları ve ortam şartları için maksimum iletken sıcaklıklarının ve akım taşıma kapasitelerinin ısıl analizler yardımıyla belirlenmesi önem arz etmektedir. Bu çalışmada, üç faz, 220 kV HVAC, XLPE izoleli bir denizaltı kablosunun farklı yüklenme koşulları altında ısıl analizleri gerçekleştirilmiştir. Sonuçlar, yüklenme oranının, faz dengesizliğinin ve deniz suyu sıcaklığının kablonun maksimum sıcaklığı, akım taşıma kapasitesi ve toplam kayıpları üzerinde önemli etkisi olduğunu göstermektedir.

References

  • COMSOL. (2023). Modeling Cables in COMSOL®: An Electromagnetics Tutorial Series. https://www.comsol.com/model/cable-tutorial-series-43431
  • Hu, M., Xie, S., Zhang, J., & Ma, Z. (2014). Desing selection of DC & AC submarine power cable for offshore wind mill. China International Conference on Electricity Distribution, CICED, 2014-December, 1675–1679. https://doi.org/10.1109/CICED.2014.6991991
  • IEEE, 1120-2004. (2004). 1120-2004 IEEE Guide for the Planning, Design, Installation, and Repair of Submarine Power Cable Systems.
  • Keskin Arabul, F., Arabul, A. Y., Kumru, C. F., & Boynuegri, A. R. (2017). Providing energy management of a fuel cell–battery–wind turbine–solar panel hybrid off grid smart home system. International Journal of Hydrogen Energy, 42(43). https://doi.org/10.1016/j.ijhydene.2017.02.204
  • Lldstad, E. (1994). World Record HVDC Submarine Cables. IEEE Electrical Insulation Magazine, 10(4), 64–67. https://doi.org/10.1109/57.298131
  • Mei, W., Pan, W., Chen, T., Song, G., & Di, J. (2017). Research and design of DC500kV optical fiber composite submarine cable. 4th IEEE International Conference on Engineering Technologies and Applied Sciences, ICETAS 2017, 2018-January, 1–6. https://doi.org/10.1109/ICETAS.2017.8277901
  • Ou, X., Xu, W., Zang, Y., Wang, H., Wu, H., Lv, A., & Zhou, Z. (2022). Mechanical analysis of 500 kV oil-filled submarine power cable in anchor and blade damage based on Finite element method. IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2022-October, 1068–1072. https://doi.org/10.1109/IAEAC54830.2022.9929551
  • Submarine Cable Almanac. (2021). Global Submarine Cable Network. https://www.submarinecablemap.com/
  • Takeshita, H., Nakamura, K., Matsuo, Y., Inoue, T., Masuda, D., Hiwatashi, T., Hosokawa, K., Inada, Y., & de Gabory, E. L. T. (2022). Demonstration of Uncoupled 4-Core Multicore Fiber in Submarine Cable Prototype with Integrated Multicore EDFA. Journal of Lightwave Technology. https://doi.org/10.1109/JLT.2022.3195190
  • Yu, X., Zhang, S., Peng, X., Feng, B., Yu, S., Zhu, W., & Deng, J. (2022). Simulation Study on Steady-State Ampacity of ±400 kV J-tube DC Submarine Cable. Proceedings - 2022 4th International Conference on Electrical Engineering and Control Technologies, CEECT 2022, 546–551. https://doi.org/10.1109/CEECT55960.2022.10030564
  • Zhang, H., XIE, S., Hu, M., Zhang, X., Ling, Z., Zhan, H., & Jing, Y. (2021). Development Prospects of High Economy XLPE Insulation HVDC Submarine Cable. 1046–1055. https://doi.org/10.1049/ICP.2021.2223
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Yiğit Arabul 0000-0003-2058-6742

Celal Fadıl Kumru 0000-0003-4248-6355

Early Pub Date May 26, 2023
Publication Date May 31, 2023
Published in Issue Year 2023

Cite

APA Arabul, A. Y., & Kumru, C. F. (2023). THERMAL ANALYSIS OF XLPE INSULATED SUBMARINE CABLES FOR DIFFERENT LOADING CONDITIONS. Journal of Naval Sciences and Engineering, 19(1), 35-51. https://doi.org/10.56850/jnse.1252303