Research Article
BibTex RIS Cite

ANNEALING TEMPERATURE EFFECTS ON SURFACE MORPHOLOGY AND OPTICAL PROPERTIES OF IGZO THIN FILMS PRODUCED BY THERMAL EVAPORATION

Year 2020, Volume: 16 Issue: 1, 25 - 44, 29.04.2020

Abstract

The use of Transparent Conductive Oxide (TCO) thin films in technology has increased in the last decades. These materials have good electrical conductivity visible light transmittance simultaneously. TCOs have many technology applications such as thin film transducers (TFTs), conductive electrodes, capacitors, sensors, electrochemical devices. Although indium tin oxide (ITO) is the most widely used material among these materials, studies on N-type indium-gallium-zinc oxide (IGZO) that better electrical properties (electron mobility µFE>10 cm2 /V.s) cm2 / Vs) have increased in recent years. In this study, IGZO thin films are produced which have a very homogeneous amorphous structure at room temperature under high vacuum by using thermal evaporation system on glass substrates. Structural characterization was carried out by scanning electron microscopy, atomic force microscopy, on IGZO thin films for various thickness and annealing temperatures. Transmittance and thickness measurements were performed using UV-VIS spectroscopy and profilometer for the investigation of optical properties, respectively. It is seen that grain size grows and grain boundaries decreases when annealing temperature is increased. This results in reduced roughness and increased optical transmittance and energy gap (Eg).

Supporting Institution

Giresun University Scientific Research Fund

Project Number

FEN-BAP-A-230218-26

References

  • [1] Zhang, M. L., Jin, F., Zheng, M. L., Liu, J., Zhao, Z. S., & Duan, X. M. (2014). “High efficiency solar cell based on ZnO nanowire array prepared by different growth methods”. Rsc Advances, 4(21), pp.10462-10466.
  • [2] Choi, Y. S., Kang, J. W., Hwang, D. K., & Park, S. J. (2009). “Recent advances in ZnO-based light-emitting diodes”. IEEE Transactions on electron devices, 57(1), pp.26-41.
  • [3] T. P. H. Sidiropoulos, R. Roder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, (2014) “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency.” Nat Phys, 10, p. 870.
  • [4] Yun, D. J., & Rhee, S. W. (2009). “Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor”. Thin Solid Films, 517(16), 4644-4649.
  • [5] Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A. (2015). Zinc oxide nanostructures for NO 2 gas–sensor applications: A review. Nano-Micro Letters, 7(2), 97-120.
  • [6] Cai, A., Du, L., Wang, Q., Chang, Y., Wang, X., & Guo, X. (2016). “Kelp-inspired N–I-doped ZnO photocatalysts with highly efficient catalytic activity”. Materials Science in Semiconductor Processing, 43, 25-33.
  • 7] Cao, X., Li, X., Gao, X., Liu, X., Yang, C., Yang, R., & Jin, P. (2011). “All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature”. Journal of Physics D: Applied Physics, 44(25), 255104.
  • [8] Struk, P., Pustelny, T., Gut, K., Golaszewska, K., Kaminska, E., Ekielski, M., & Piotrowska, A. (2009). “Planar optical waveguides based on thin ZnO layers. Acta Physica Polonica-Series A General Physics”, 116(3), 414.
  • [9] Jayaraman, V. K., Kuwabara, Y. M., & Álvarez, A. M. (2016). “Importance of substrate rotation speed on the growth of homogeneous ZnO thin films by reactive sputtering”. Materials Letters, 169, 1-4.
  • [10] Tsoutsouva, M. G., Panagopoulos, C. N., Papadimitriou, D., Fasaki, I., & Kompitsas, M. (2011). “ZnO thin films prepared by pulsed laser deposition”. Materials Science and Engineering: B, 176(6), 480-483.
  • [11] Hasim, S. N. F., Hamid, M. A. A., Shamsudin, R., & Jalar, A. (2009). “Synthesis and characterization of ZnO thin films by thermal evaporation”. Journal of Physics and Chemistry of Solids, 70(12), 1501-1504.
  • [12] Duan, L., Zhao, X., Zhang, Y., Shen, H., & Liu, R. (2016). “Fabrication of flexible Al-doped ZnO films via sol–gel method”. Materials Letters, 162, 199-202.
  • [13] Ergin, B., Ketenci, E., & Atay, F. (2009). “Characterization of ZnO films obtained by ultrasonic spray pyrolysis technique”. International journal of hydrogen energy, 34(12), 5249-5254.
  • [14] Ali, M. M. (2011). “Characterization of ZnO thin films grown by chemical bath deposition”. Journal of Basrah Researches (Sciences), 37(3A), 49-56.
  • [15] Huang, Y., Sarkar, D. K., & Chen, X. G. (2015). “Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process”. Applied Surface Science, 327, 327-334.
  • [16] Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”. nature, 432(7016), 488-492.
  • [17] Leppänen, K., Saarela, J., Myllylä, R., & Fabritius, T. (2013). “Electrical heating synchronized with IR imaging to determine thin film defects”. Optics express, 21(26), 32358-32370.
  • [18] Kim, S., Jeon, Y. W., Kim, Y., Kong, D., Jung, H. K., Bae, M. K., & Park, J. (2011). “Impact of oxygen flow rate on the instability under positive bias stresses in DC-sputtered amorphous InGaZnO thin-film transistors”. IEEE Electron Device Letters, 33(1), 62-64.
  • [19] Kikuchi, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. (2010). “Device characteristics improvement of a-In–Ga–Zn–O TFTs by low-temperature annealing”. Thin Solid Films, 518(11), 3017-3021.
  • [20] Matsuo, T., Mori, S., Ban, A., & Imaya, A. (2014, June). 8.3: “Invited paper: advantages of IGZO oxide semiconductor”. In SID Symposium Digest of Technical Papers (Vol. 45, No. 1, pp. 83-86).
  • [21] Nakata, M., Takechi, K., Eguchi, T., Tokumitsu, E., Yamaguchi, H., & Kaneko, S. (2009). “Flexible high-performance amorphous InGaZnO4 thin-film transistors utilizing excimer laser annealing”. Japanese Journal of Applied Physics, 48(8R), 081607.
  • [22] Gosain, D. P., & Tanaka, T. (2009). “Instability of amorphous indium gallium zinc oxide thin film transistors under light illumination”. Japanese Journal of Applied Physics, 48(3S2), 03B018.
  • [23] Ohara, H., Sasaki, T., Noda, K., Ito, S., Sasaki, M., Endo, Y.,& Yamazaki, S. (2010). “4.0-inch active-matrix organic light-emitting diode display integrated with driver circuits using amorphous In–Ga–Zn-Oxide thin-film transistors with suppressed variation”. Japanese Journal of Applied Physics, 49(3S), 03CD02.
  • [24] Godo, H., Kawae, D., Yoshitomi, S., Sasaki, T., Ito, S., Ohara, H., & Yamazaki, S. (2010). “Temperature dependence of transistor characteristics and electronic structure for amorphous In–Ga–Zn-Oxide thin film transistor”. Japanese Journal of Applied Physics, 49(3S), 03CB04.
  • [25] Takechi, K., Nakata, M., Eguchi, T., Yamaguchi, H., & Kaneko, S. (2009). “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors”. Japanese Journal of Applied Physics, 48(1R), 011301.
  • [26] Takechi, K., Nakata, M., Eguchi, T., Yamaguchi, H., & Kaneko, S. (2009). “Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors”. Japanese Journal of Applied Physics, 48(1R), 010203.
  • [27] M. o. E. chunichi Industry and Technology Award (27th), Trade and Industry Award.
  • [28] Durdu, S., Aktug, S. L., Aktas, S., Yalcin, E., Cavusoglu, K., Altinkok, A., & Usta, M. (2017). “Characterization and in vitro properties of anti-bacterial Ag-based bioceramic coatings formed on zirconium by micro arc oxidation and thermal evaporation”. Surface and Coatings Technology, 331, 107-115.
  • [29] Tsarkova, L., Knoll, A., Krausch, G., & Magerle, R. (2006). “Substrate-induced phase transitions in thin films of cylinder-forming diblock copolymer melts”. Macromolecules, 39(10), 3608-3615.
  • [30] Zalakain, I., Ramos, J. A., Fernandez, R., Etxeberria, H., & Mondragon, I. (2012). “Silicon and carbon substrates induced arrangement changes in poly (styrene‐b‐isoprene‐b‐styrene) block copolymer thin films”. Journal of applied polymer science, 125(2), 1552-1558.
  • [31] De Meux, A. D. J., Pourtois, G., Genoe, J., & Heremans, P. (2015). “Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects”. Journal of Physics D: Applied Physics, 48(43), 435104.
  • [32] Ling, L., Tao, X., Zhongxiao, S., Chunliang, L., & Fei, M. (2016). “Effect of sputteringpressure on surface roughness, oxygen vacancy and electrical properties of a-IGZO thin films”. Rare Metal Materials and Engineering, 45(8), 1992-1996.
  • [33] de Jamblinne de Meux, A., Bhoolokam, A., Pourtois, G., Genoe, J., & Heremans, P. (2017). “Oxygen vacancies effects in a‐IGZO: Formation mechanisms, hysteresis, and negative bias stress effects”. physica status solidi (a), 214(6), 1600889.
  • [34] Li, X., Wang, Y., Liu, W., Jiang, G., & Zhu, C. (2012). “Study of oxygen vacancies′ influence on the lattice parameter in ZnO thin film”. Materials Letters, 85, 25-28.
  • [35] Liu, H., Zeng, F., Lin, Y., Wang, G., & Pan, F. (2013). “Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films”. Applied Physics Letters, 102(18), 181908.
  • [36] Ahmed, N. M., Sabah, F. A., Abdulgafour, H. I., Alsadig, A., Sulieman, A., & Alkhoaryef, M. (2019). “The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement”. Results in Physics, 13, 102159.
  • [37] Valencia, S., Marín, J. M., & Restrepo, G. (2009). “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment”. The Open Materials Science Journal, 4(1).
  • [38] J.N. Hodgson, Optical Absorbtion and Dispersion in Solids, Chapman & Hall, London, 1970.

TAVLAMA SICAKLIĞININ TERMAL BUHARLAŞTIRMA İLE ÜRETİLEN IGZO İNCE FİLMLERDE YÜZEY MORFOLOJİSİ VE OPTİK ÖZELLİKLERE ETKİSİ

Year 2020, Volume: 16 Issue: 1, 25 - 44, 29.04.2020

Abstract

Saydam
İletken Oksit (TCO) ince filmlerin teknolojide kullanımı son yıllarda artmıştır.

Bu
malzemeler aynı anda iyi bir elektrik iletkenliğine ve görünür ışık
geçirgenliğine sahiptir. TCO'lar, ince film dönüştürücüler (TFT'ler), iletken
elektrotlar, kapasitörler, sensörler, elektrokimyasal cihazlar gibi birçok
teknoloji uygulamasında kullanılmaktadırlar.
İndiyum kalay oksit (ITO) bu
malzemeler arasında en yaygın kullanılan malzeme olmasına rağmen, daha iyi
elektriksel özelliklere (elektron hareketliliği µFE>10 cm
2 /V.s)
cm
2 / Vs) sahip olan N tipi indiyum-galyum-çinko oksit (IGZO)
üzerinde yapılan çalışmalar günümüzde önem kazanmıştır.
Bu çalışmada, cam alttaş üzerinde termal
buharlaştırma sistemi kullanılarak yüksek vakum altında oda sıcaklığında çok
homojen bir amorf yapıya sahip IGZO ince filmler üretilmiştir. Üretilen IGZO
ince filmlerin yapısal karakterizasyonu ise Atomik kuvvet mikroskobu ve
taramalı elektron mikroskobu kullanılarak  çeşitli kalınlık ve tavlama sıcaklıkları için
gerçekleştirilmiştir.
Geçirgenlik ve
kalınlık ölçümleri ise optik özelliklerin araştırılması için sırasıyla UV-VIS
spektroskopisi ve profilometre kullanılarak yapılmıştır.
Tavlama sıcaklığı arttıkça tanecik boyutunun
büyüdüğü ve tane sınırlarının azaldığı görülmektedir.
Bu durum, pürüzlülüğün azalmasına ve optik geçirgenliğin ve enerji boşluğunun
(E
g) artmasına neden olmaktadır.

Project Number

FEN-BAP-A-230218-26

References

  • [1] Zhang, M. L., Jin, F., Zheng, M. L., Liu, J., Zhao, Z. S., & Duan, X. M. (2014). “High efficiency solar cell based on ZnO nanowire array prepared by different growth methods”. Rsc Advances, 4(21), pp.10462-10466.
  • [2] Choi, Y. S., Kang, J. W., Hwang, D. K., & Park, S. J. (2009). “Recent advances in ZnO-based light-emitting diodes”. IEEE Transactions on electron devices, 57(1), pp.26-41.
  • [3] T. P. H. Sidiropoulos, R. Roder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, (2014) “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency.” Nat Phys, 10, p. 870.
  • [4] Yun, D. J., & Rhee, S. W. (2009). “Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor”. Thin Solid Films, 517(16), 4644-4649.
  • [5] Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A. (2015). Zinc oxide nanostructures for NO 2 gas–sensor applications: A review. Nano-Micro Letters, 7(2), 97-120.
  • [6] Cai, A., Du, L., Wang, Q., Chang, Y., Wang, X., & Guo, X. (2016). “Kelp-inspired N–I-doped ZnO photocatalysts with highly efficient catalytic activity”. Materials Science in Semiconductor Processing, 43, 25-33.
  • 7] Cao, X., Li, X., Gao, X., Liu, X., Yang, C., Yang, R., & Jin, P. (2011). “All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature”. Journal of Physics D: Applied Physics, 44(25), 255104.
  • [8] Struk, P., Pustelny, T., Gut, K., Golaszewska, K., Kaminska, E., Ekielski, M., & Piotrowska, A. (2009). “Planar optical waveguides based on thin ZnO layers. Acta Physica Polonica-Series A General Physics”, 116(3), 414.
  • [9] Jayaraman, V. K., Kuwabara, Y. M., & Álvarez, A. M. (2016). “Importance of substrate rotation speed on the growth of homogeneous ZnO thin films by reactive sputtering”. Materials Letters, 169, 1-4.
  • [10] Tsoutsouva, M. G., Panagopoulos, C. N., Papadimitriou, D., Fasaki, I., & Kompitsas, M. (2011). “ZnO thin films prepared by pulsed laser deposition”. Materials Science and Engineering: B, 176(6), 480-483.
  • [11] Hasim, S. N. F., Hamid, M. A. A., Shamsudin, R., & Jalar, A. (2009). “Synthesis and characterization of ZnO thin films by thermal evaporation”. Journal of Physics and Chemistry of Solids, 70(12), 1501-1504.
  • [12] Duan, L., Zhao, X., Zhang, Y., Shen, H., & Liu, R. (2016). “Fabrication of flexible Al-doped ZnO films via sol–gel method”. Materials Letters, 162, 199-202.
  • [13] Ergin, B., Ketenci, E., & Atay, F. (2009). “Characterization of ZnO films obtained by ultrasonic spray pyrolysis technique”. International journal of hydrogen energy, 34(12), 5249-5254.
  • [14] Ali, M. M. (2011). “Characterization of ZnO thin films grown by chemical bath deposition”. Journal of Basrah Researches (Sciences), 37(3A), 49-56.
  • [15] Huang, Y., Sarkar, D. K., & Chen, X. G. (2015). “Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process”. Applied Surface Science, 327, 327-334.
  • [16] Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”. nature, 432(7016), 488-492.
  • [17] Leppänen, K., Saarela, J., Myllylä, R., & Fabritius, T. (2013). “Electrical heating synchronized with IR imaging to determine thin film defects”. Optics express, 21(26), 32358-32370.
  • [18] Kim, S., Jeon, Y. W., Kim, Y., Kong, D., Jung, H. K., Bae, M. K., & Park, J. (2011). “Impact of oxygen flow rate on the instability under positive bias stresses in DC-sputtered amorphous InGaZnO thin-film transistors”. IEEE Electron Device Letters, 33(1), 62-64.
  • [19] Kikuchi, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. (2010). “Device characteristics improvement of a-In–Ga–Zn–O TFTs by low-temperature annealing”. Thin Solid Films, 518(11), 3017-3021.
  • [20] Matsuo, T., Mori, S., Ban, A., & Imaya, A. (2014, June). 8.3: “Invited paper: advantages of IGZO oxide semiconductor”. In SID Symposium Digest of Technical Papers (Vol. 45, No. 1, pp. 83-86).
  • [21] Nakata, M., Takechi, K., Eguchi, T., Tokumitsu, E., Yamaguchi, H., & Kaneko, S. (2009). “Flexible high-performance amorphous InGaZnO4 thin-film transistors utilizing excimer laser annealing”. Japanese Journal of Applied Physics, 48(8R), 081607.
  • [22] Gosain, D. P., & Tanaka, T. (2009). “Instability of amorphous indium gallium zinc oxide thin film transistors under light illumination”. Japanese Journal of Applied Physics, 48(3S2), 03B018.
  • [23] Ohara, H., Sasaki, T., Noda, K., Ito, S., Sasaki, M., Endo, Y.,& Yamazaki, S. (2010). “4.0-inch active-matrix organic light-emitting diode display integrated with driver circuits using amorphous In–Ga–Zn-Oxide thin-film transistors with suppressed variation”. Japanese Journal of Applied Physics, 49(3S), 03CD02.
  • [24] Godo, H., Kawae, D., Yoshitomi, S., Sasaki, T., Ito, S., Ohara, H., & Yamazaki, S. (2010). “Temperature dependence of transistor characteristics and electronic structure for amorphous In–Ga–Zn-Oxide thin film transistor”. Japanese Journal of Applied Physics, 49(3S), 03CB04.
  • [25] Takechi, K., Nakata, M., Eguchi, T., Yamaguchi, H., & Kaneko, S. (2009). “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors”. Japanese Journal of Applied Physics, 48(1R), 011301.
  • [26] Takechi, K., Nakata, M., Eguchi, T., Yamaguchi, H., & Kaneko, S. (2009). “Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors”. Japanese Journal of Applied Physics, 48(1R), 010203.
  • [27] M. o. E. chunichi Industry and Technology Award (27th), Trade and Industry Award.
  • [28] Durdu, S., Aktug, S. L., Aktas, S., Yalcin, E., Cavusoglu, K., Altinkok, A., & Usta, M. (2017). “Characterization and in vitro properties of anti-bacterial Ag-based bioceramic coatings formed on zirconium by micro arc oxidation and thermal evaporation”. Surface and Coatings Technology, 331, 107-115.
  • [29] Tsarkova, L., Knoll, A., Krausch, G., & Magerle, R. (2006). “Substrate-induced phase transitions in thin films of cylinder-forming diblock copolymer melts”. Macromolecules, 39(10), 3608-3615.
  • [30] Zalakain, I., Ramos, J. A., Fernandez, R., Etxeberria, H., & Mondragon, I. (2012). “Silicon and carbon substrates induced arrangement changes in poly (styrene‐b‐isoprene‐b‐styrene) block copolymer thin films”. Journal of applied polymer science, 125(2), 1552-1558.
  • [31] De Meux, A. D. J., Pourtois, G., Genoe, J., & Heremans, P. (2015). “Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects”. Journal of Physics D: Applied Physics, 48(43), 435104.
  • [32] Ling, L., Tao, X., Zhongxiao, S., Chunliang, L., & Fei, M. (2016). “Effect of sputteringpressure on surface roughness, oxygen vacancy and electrical properties of a-IGZO thin films”. Rare Metal Materials and Engineering, 45(8), 1992-1996.
  • [33] de Jamblinne de Meux, A., Bhoolokam, A., Pourtois, G., Genoe, J., & Heremans, P. (2017). “Oxygen vacancies effects in a‐IGZO: Formation mechanisms, hysteresis, and negative bias stress effects”. physica status solidi (a), 214(6), 1600889.
  • [34] Li, X., Wang, Y., Liu, W., Jiang, G., & Zhu, C. (2012). “Study of oxygen vacancies′ influence on the lattice parameter in ZnO thin film”. Materials Letters, 85, 25-28.
  • [35] Liu, H., Zeng, F., Lin, Y., Wang, G., & Pan, F. (2013). “Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films”. Applied Physics Letters, 102(18), 181908.
  • [36] Ahmed, N. M., Sabah, F. A., Abdulgafour, H. I., Alsadig, A., Sulieman, A., & Alkhoaryef, M. (2019). “The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement”. Results in Physics, 13, 102159.
  • [37] Valencia, S., Marín, J. M., & Restrepo, G. (2009). “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment”. The Open Materials Science Journal, 4(1).
  • [38] J.N. Hodgson, Optical Absorbtion and Dispersion in Solids, Chapman & Hall, London, 1970.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Atilgan Altınkök 0000-0002-0548-4361

Murat Olutaş 0000-0002-6250-6977

Project Number FEN-BAP-A-230218-26
Publication Date April 29, 2020
Published in Issue Year 2020 Volume: 16 Issue: 1

Cite

APA Altınkök, A., & Olutaş, M. (2020). ANNEALING TEMPERATURE EFFECTS ON SURFACE MORPHOLOGY AND OPTICAL PROPERTIES OF IGZO THIN FILMS PRODUCED BY THERMAL EVAPORATION. Journal of Naval Sciences and Engineering, 16(1), 25-44.