Research Article
BibTex RIS Cite

ENERGY SYSTEM ANALYSIS AND MODELING OF AN ELECTRIC POWERED FERRY

Year 2020, Volume: 16 Issue: 2, 143 - 170, 11.11.2020

Abstract

Today, approximately 85% of world trade is carried out by sea and ships are indispensable elements of transportation, logistics and trade. But on the other hand, approximately 2.5% of global green gas emissions, which have adverse effects on air quality and public health, is originated from ships and maritime transportation activities. Considering this situation, the International Maritime Organization promotes the use of renewable/alternative energy sources on ships, rather than fossil fuels. In the 11st Development Plan of Republic of Turkey, it is also aimed to convert the ships used for vehicle and passenger transportation in a short distance into “all-electric” concept. In this study, energy system analysis and modelling of a new generation ferry with a diesel electric propulsion system, which is used for vehicle and passenger transportation, have been carried out by using the Reference Energy System approach and Longrange Energy Alternatives Planning System software. In conclusion of the study, results of analysis related to the ferry’s energy system, which also include theoretical emission estimates for conversion scenario of the ferry’s energy system into hybrid concept, have been presented. Additionally, some suggestions for increasing energy efficiency of the ferry have been presented as well.

Thanks

This article has been produced from M.Sc. Thesis which is entitled as “Energy System Analysis and Modelling of an Electrical/Hybrid Ferry Used for Maritime Transportation: Technical & Environmental Investigation” and was prepared at Marine Mechanical Engineering Department of Barbaros Naval Sciences and Engineering Institute of National Defence University (NDU) in Tuzla, Istanbul, Turkey. This is also a substantially extended version of the paper presented at the 10th International 100% Renewable Energy Conference (IRENEC 2020). The Authors would like to thank to İstanbul Deniz Otobüsleri (İDO) for technical support to obtain more realistic results by using real data and specially thanks to Technical Fuel & Environmental Manager - Oceangoing Chief Engineer Mr. Yavuz ÇATAL for his professional support and technical guidance during the study.

References

  • Benli, İ., Sulukan, E., & Alkan, A.D. (2019). Developing the Reference Energy System of a Generic Frigate. Journal of Naval Sciences and Engineering, 15(1): 1-20.
  • Baldi, F. (2016). Modelling, analysis and optimisation of ship energy systems. Chalmers University of Technology, Department of Shipping and Marine Technology, Gothenburg, Sweden.
  • Durmaz, M., Kalender, S.S. & Ergin, S. (2016). Bir Feribottan Yayılan Emisyonların Deneysel Olarak İncelenmesi. GİDB Dergisi, 6:3-11.
  • International Maritime Organization (IMO). (2019). UN body adopts climate change strategy for shipping. Retrieved from http://www.imo.org
  • İstanbul Deniz Otobüsleri (İDO). (2020). Filo Tanıtım. Retrieved from https://www.ido.com.tr/services-new#filomuz
  • Johnson, H., Johansson, M., Andersson, K., & Södahl, B. (2013). Will the ship energy efficiency management plan reduce CO2 emissions? A comparison with ISO 50001 and the ISM code. Maritime Policy & Management, 40(2):177-190.
  • Long Range Energy Alternatives Planning System (LEAP). (2019). Retrieved from https://www.energycommunity.org
  • Ministry of Transport and Infrastructure (MoTI). (2020). Maritime Statistics. Retrieved from https://denizcilikistatistikleri.uab.gov.tr/
  • Mutluel, F., & Sulukan, E. (2014, Haziran). Reference Energy System Development for Turkish Residential Sector. IRENEC 2014 Conference Proceedings Book (pp.179-186).
  • Sahabbir, R. & Ahmad, S.S. (2010). Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model. Energy, 35(5):2323-2332.
  • Sulukan, E., Özkan D. & Sarı, A. (2018). Reference Energy System Analysis of a Generic Ship. Journal of Clean Energy Technologies, 6 (5):371-376.
  • Sulukan, E. (2017). A Native Energy Decision Model for Turkey. T. S. Uyar içinde, Towards 100% Renewable Energy (s. 167-177). Cham: Springer
  • Sulukan, E., Sağlam, M., Uyar, T.S. & Kırlıdoğ, M. (2010). Determining Optimum Energy Strategies for Turkey by MARKAL Model. Journal of Naval Science and Engineering, 6(1):27-38.
  • Talay, A. A., Deniz , C. & Durmuşoğlu, Y. (2014). Gemilerde Verimi Arttırmak İçin Uygulanan Yöntemlerin CO2 Emisyonlarını Azaltmaya Yönelik Etkilerinin Analizi. Journal of ETA Maritime Science, 1(2):61-74.
  • The Grand National Assembly of Turkey (TBMM). (2013). Decision on the approval of the Eleventh Development Plan (2019-2023). Official Gazzette, 30840 (Mükerrer), 23.07.2013. Retrieved from www.sbb.gov.tr
  • Tillig, F., Ringsberg, J., Mao, W. & Ramne, B. (2017). A generic energy systems model for efficient ship design and operation. Journal of Engineering for the Maritime Environment, 231(2):649-666.
  • Vassalos, D., & Cichowicz, J. (2014). Performance-based ship energy efficiency - the way forward. In Influence of EEDI on Ship Design 2014 (pp. 88-98). London: Royal Institution of Naval Architects.
  • Yan, Y., Zhang.H., Long, Y., Wang, Y., Liang, Y., Song, X. & Yu, J.J.Q. (2019). Multi-objective Design Optimization of Combined Cooling, Heating and Power System for Cruise Ship Application. Journal of Cleaner Production, 233:264-279.
  • Yılmaz, M.A., Sulukan, E., Özkan, D. & Uyar, T.S. . (2018). Reference Energy System Design for a Crude Oil Tanker. International 100% Renewable Energy Conference (IRENEC) Proceedings Book (s.50-55).
  • Yiğit, K. (2018). Gemi Teknolojisinde Alternatif Enerji Sistemlerinin Kullanım Potansiyelinin İncelenmesi. Gemi ve Deniz Teknolojisi, 214:5-18.
  • Yophy, H., Jeffrey, B. Y. & Peng, C-Y. (2011). The long-term forecast of Taiwan’s energy supply and demand: LEAP model application. Energy Policy, 39(11): 6790-6803.

ELEKTRİKLE ÇALIŞAN BİR FERİBOTUN ENERJİ SİSTEM ANALİZİ VE MODELLENMESİ

Year 2020, Volume: 16 Issue: 2, 143 - 170, 11.11.2020

Abstract

Günümüzde, dünya ticaretinin yaklaşık %85’i denizyolu ile yapılmakta olup gemiler, ulaştırma, lojistik ve ticaretin vazgeçilmez unsurlarıdır. Ancak öte yandan, küresel sera gazı emisyonlarının yaklaşık %2.5'i gemilerden ve deniz taşımacılığı faaliyetlerinden kaynaklanmakta, emisyonların hava kalitesi ve insan sağlığına olumsuz etkileri bulunmaktadır. Bu durumu göz önünde bulunduran Uluslararası Denizcilik Örgütü, gemilerde fosil yakıt yerine yenilenebilir/alternatif enerji kaynaklarının kullanımını teşvik etmektedir. Ülkemizin 11. Kalkınma Planı’nda da kısa mesafeli araç ve yolcu taşımacılığında kullanılan gemilerin “tam elektrikli” hale dönüştürülmesi hedeflenmektedir. Bu çalışmada; Referans Enerji Sistemi yaklaşımı ve Long Range Energy Alternatives Planning System yazılımı kullanılarak, deniz ulaşımında kullanılan yeni nesil diesel elektrik tahrikli bir arabalı feribotun enerji sistem modellemesi ve analizi yapılmıştır. Çalışmanın sonucunda, feribotun enerji sisteminin hibrit konsepte dönüşüm senaryosu için teorik emisyon tahminleri de dahil olmak üzere feribotun enerji sistemine ilişkin analiz sonuçları sunulmuştur. Ayrıca feribotun enerji verimliliğinin arttırılmasına yönelik de bazı öneriler de sunulmuştur.

References

  • Benli, İ., Sulukan, E., & Alkan, A.D. (2019). Developing the Reference Energy System of a Generic Frigate. Journal of Naval Sciences and Engineering, 15(1): 1-20.
  • Baldi, F. (2016). Modelling, analysis and optimisation of ship energy systems. Chalmers University of Technology, Department of Shipping and Marine Technology, Gothenburg, Sweden.
  • Durmaz, M., Kalender, S.S. & Ergin, S. (2016). Bir Feribottan Yayılan Emisyonların Deneysel Olarak İncelenmesi. GİDB Dergisi, 6:3-11.
  • International Maritime Organization (IMO). (2019). UN body adopts climate change strategy for shipping. Retrieved from http://www.imo.org
  • İstanbul Deniz Otobüsleri (İDO). (2020). Filo Tanıtım. Retrieved from https://www.ido.com.tr/services-new#filomuz
  • Johnson, H., Johansson, M., Andersson, K., & Södahl, B. (2013). Will the ship energy efficiency management plan reduce CO2 emissions? A comparison with ISO 50001 and the ISM code. Maritime Policy & Management, 40(2):177-190.
  • Long Range Energy Alternatives Planning System (LEAP). (2019). Retrieved from https://www.energycommunity.org
  • Ministry of Transport and Infrastructure (MoTI). (2020). Maritime Statistics. Retrieved from https://denizcilikistatistikleri.uab.gov.tr/
  • Mutluel, F., & Sulukan, E. (2014, Haziran). Reference Energy System Development for Turkish Residential Sector. IRENEC 2014 Conference Proceedings Book (pp.179-186).
  • Sahabbir, R. & Ahmad, S.S. (2010). Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model. Energy, 35(5):2323-2332.
  • Sulukan, E., Özkan D. & Sarı, A. (2018). Reference Energy System Analysis of a Generic Ship. Journal of Clean Energy Technologies, 6 (5):371-376.
  • Sulukan, E. (2017). A Native Energy Decision Model for Turkey. T. S. Uyar içinde, Towards 100% Renewable Energy (s. 167-177). Cham: Springer
  • Sulukan, E., Sağlam, M., Uyar, T.S. & Kırlıdoğ, M. (2010). Determining Optimum Energy Strategies for Turkey by MARKAL Model. Journal of Naval Science and Engineering, 6(1):27-38.
  • Talay, A. A., Deniz , C. & Durmuşoğlu, Y. (2014). Gemilerde Verimi Arttırmak İçin Uygulanan Yöntemlerin CO2 Emisyonlarını Azaltmaya Yönelik Etkilerinin Analizi. Journal of ETA Maritime Science, 1(2):61-74.
  • The Grand National Assembly of Turkey (TBMM). (2013). Decision on the approval of the Eleventh Development Plan (2019-2023). Official Gazzette, 30840 (Mükerrer), 23.07.2013. Retrieved from www.sbb.gov.tr
  • Tillig, F., Ringsberg, J., Mao, W. & Ramne, B. (2017). A generic energy systems model for efficient ship design and operation. Journal of Engineering for the Maritime Environment, 231(2):649-666.
  • Vassalos, D., & Cichowicz, J. (2014). Performance-based ship energy efficiency - the way forward. In Influence of EEDI on Ship Design 2014 (pp. 88-98). London: Royal Institution of Naval Architects.
  • Yan, Y., Zhang.H., Long, Y., Wang, Y., Liang, Y., Song, X. & Yu, J.J.Q. (2019). Multi-objective Design Optimization of Combined Cooling, Heating and Power System for Cruise Ship Application. Journal of Cleaner Production, 233:264-279.
  • Yılmaz, M.A., Sulukan, E., Özkan, D. & Uyar, T.S. . (2018). Reference Energy System Design for a Crude Oil Tanker. International 100% Renewable Energy Conference (IRENEC) Proceedings Book (s.50-55).
  • Yiğit, K. (2018). Gemi Teknolojisinde Alternatif Enerji Sistemlerinin Kullanım Potansiyelinin İncelenmesi. Gemi ve Deniz Teknolojisi, 214:5-18.
  • Yophy, H., Jeffrey, B. Y. & Peng, C-Y. (2011). The long-term forecast of Taiwan’s energy supply and demand: LEAP model application. Energy Policy, 39(11): 6790-6803.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatih Yılmaz 0000-0001-5652-0265

Egemen Sulukan 0000-0003-1138-2465

Publication Date November 11, 2020
Published in Issue Year 2020 Volume: 16 Issue: 2

Cite

APA Yılmaz, F., & Sulukan, E. (2020). ENERGY SYSTEM ANALYSIS AND MODELING OF AN ELECTRIC POWERED FERRY. Journal of Naval Sciences and Engineering, 16(2), 143-170.