Research Article
BibTex RIS Cite

AÇISAL ÇEŞİTLEMELİ ALICI TABANLI GÖRÜNÜR IŞIK HABERLEŞMESİ İÇİN UYARLANABİLİR MIMO TEKNİKLERİNİN PERFORMANS ANALİZİ

Year 2024, Volume: 20 Issue: 2, 163 - 189, 06.11.2024
https://doi.org/10.56850/jnse.1496134

Abstract

Kanallar arası ilinti çok-girişli çok-çıkışlı görünür ışık haberleşmesinde (MIMO-VLC) veri hızlarını sınırlayan en büyük etkendir. Bu ilinti değerini azaltmak için farklı alıcı tasarımları önerilmiştir. Diğer taraftan ilintili kanal etkisi altında daha iyi performans gösteren uyarlanabilir modülasyonlar verici tarafta çalışılmıştır. Bu çalışmada, verici tarafta uyarlanabilir MIMO modülasyonları ve alıcı tarafta açısal çeşitlemeli alıcı (ADR) yapıları kullanılarak MIMO-VLC sistemlerin performans analizi yapılmıştır. Uyarlanabilir modülasyonlar olarak uzamsal çeşitleme (SD) ve uzamsal çoğullama (SMP) modülasyonları kullanılarak oluşturulan; SD/SMP anahtarlaması, uyarlanabilir SMP (aSMP) ve SD-destekli uyarlanabilir SMP (SD-aSMP) dikkate alınmıştır. Bina içi ortamda ulaşılabilir veri (AR) hızlarının analitik ve benzetim sonuçları elde edilmiştir. AR değerleri kullanılarak bina içi ortamın genelindeki performansları değerlendirebilmek için toplamsal dağılım fonksiyonu (CDF) grafikleri çizdirilmiştir. GADR, düşük SNR bölgelerinde ADR'ye göre avantajlıdır ancak yüksek SNR bölgelerinde benzer şekilde performans gösterir. SD-aSMP şeması, düşük SNR'de çeşitlilik kazancından ve yüksek SNR bölgelerinde çoğullama kazancından yararlanarak hibrit bir modülasyon olarak tüm SNR bölgelerinde en iyi performansı göstermiştir. LED sayısının arttırılması uyarlanabilir SMP şemalarının performansını artırmıştır. Benzer şekilde yükseklik açısının 60 dereceye kadar arttırılması da uyarlanabilir SMP şemalarının performansını iyileştirmiştir.

References

  • Alsabah, M., et al. (2021) “6G Wireless Communications Networks: A Comprehensive Survey”. IEEE Access, Vol. 9, pp. 148191-148243. doi: 10.1109/ACCESS.2021.3124812.
  • Armstrong, J. (2009). “OFDM for Optical Communications”. Journal of Lightwave Technology, 27(3), pp. 189-204. doi: 10.1109/JLT.2008.2010061.
  • Armstrong, J. & Schmidt, B. J. C. (2008) “Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN”. IEEE Communications Letters, 12(5), pp. 343-345. doi: 10.1109/LCOMM.2008.080193.
  • Armstrong, J., Sekercioglu, Y. A., & Neild, A. (2013). “Visible light positioning: a roadmap for international standardization”. IEEE Communications Magazine, 51(12), pp. 68-73. doi: 10.1109/MCOM.2013.6685759.
  • Celik, Y. (2023). “Location-Based Visible Light Communication”. 31st Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkiye. doi: 10.1109/SIU59756.2023.10223907.
  • Chen, C., Yang, H., Du, P., Zhong, W.-D., Alphones, A., Yang, Y., & Deng, X. (2020). “User-centric MIMO techniques for indoor visible light communication systems”. IEEE Systems Journal, 14(3), pp. 3202–3213. doi: 10.1109/JSYST.2019.2961696.
  • Chen, Z., Basnayaka, D.A. & Haas, H. (2017). “Space division multiple access for optical attocell network using angle diversity transmitters.” Journal of Lightwave Technology, 35, pp. 2118–2131. doi: 10.1109/JLT.2017.2670367.
  • Dixit, V. & Kumar, A. (2020). “Performance analysis of indoor visible light communication system with angle diversity transmitter.” In Proceedings of the IEEE fourth Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020, pp. 1–5. doi: 10.1109/CICT51604.2020.9312087.
  • Fath, T. & Haas, H. (2013). “Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments”. IEEE Transactions on Communications, 61(2), pp. 733-742. doi: 10.1109/TCOMM.2012.120512.110578.
  • Gesbert, D., Shafi, M., Shiu, D., Smith, P. J. & Naguib, A. (2003). “From theory to practice: an overview of MIMO space-time coded wireless systems”. IEEE Journal on Selected Areas in Comm., 21(3), pp. 281-302. doi: 10.1109/JSAC.2003.809458. Guo, F., Yu, F. R., Zhang, H., Li, X., Ji, H. & Leung, V. C. M. (2021). “Enabling Massive IoT Toward 6G: A Comprehensive Survey”. IEEE Internet of Things Journal, 8(15), pp. 11891-11915. doi: 10.1109/JIOT.2021.3063686.
  • Harada, R., Geldard, C. T. & Popoola, W. O. (2023). “Performance Analysis of Angular Diversity Receivers in Visible Light Communications”. IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada. doi: 10.1109/PIMRC56721.2023.10294068.
  • Horunlu, K. & Celik, Y. (2024). “User-Centric Visible Light Communication,” 32nd Signal Processing and Communications Applications Conference (SIU), Mersin, Turkiye, pp. 1-4, doi: 10.1109/SIU61531.2024.10600789. Kahn, J. M. & Barry, J. R. (1997). “Wireless infrared communications”. Proceedings of the IEEE, 85(2), pp. 265-298. doi: 10.1109/5.554222.
  • Luo, P. et al., (2015). “Experimental Demonstration of RGB LED-Based Optical Camera Communications”, IEEE Photonics Journal, 7(5), pp. 1-12. doi: 10.1109/JPHOT.2015.2486680.
  • Nuwanpriya, A., Ho, S. -W., & Chen, C. S. (2014). “Angle diversity receiver for indoor MIMO visible light communications”. IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA. doi: 10.1109/GLOCOMW.2014.7063472.
  • Nuwanpriya, A., Ho, S. -W., & Chen, C. S. (2015). “Indoor MIMO Visible Light Communications: Novel Angle Diversity Receivers for Mobile Users”. IEEE Journal on Selected Areas in Communications, 33(9), pp. 1780-1792. doi: 10.1109/JSAC.2015.2432514.
  • Qin, B., Wen, W., Liu, M., Zhang, Y. & Chen C. (2022). “Indoor MIMO-VLC Using Angle Diversity Transmitters.” Sensors, 22(14), pp. 5436. doi: 10.3390/s22145436.
  • Penrose, R. A. (1955). “Generalized inverse for matrices”. Mathematical Proceedings of the Cambridge Philosophical Society. 51(3) pp. 406-413. doi: 10.1017/S0305004100030401.
  • Shannon, C. E. (1948). “A mathematical theory of communication”. The Bell System Technical Journal, 27(3), pp. 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
  • Su, Y., et al. (2024). “Efficient User-Centric AP Clustering Through Stable UE-AP Matching for Indoor VLC Systems,” IEEE Wireless Communications Letters, 13(7), pp. 1903-1907. doi: 10.1109/LWC.2024.3395511.
  • Tanaka, Y., Komine, T., Haruyama S. & Nakagawa, M. (2001) “Indoor visible communication utilizing plural white LEDs as lighting”. 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001, San Diego, CA, USA doi: 10.1109/PIMRC.2001.965300.
  • Telater, I.E. (1999). “Capacity of multi-antenna Gaussian channels”. European Transactions on Telecomm., 10(6), pp. 585-595. doi: 10.1002/ett.4460100604.
  • Tsonev, D., Videv, S., and Haas, H. (2014). “Light fidelity (Li-Fi): towards all-optical networking”, Proc. SPIE 9007, Broadband Access Communication Technologies VIII, 900702. doi: 10.1117/12.2044649.
  • Vegni, A. M. & Biagi, M. (2019). “Optimal LED placement in indoor VLC networks”. Optics Express, 27(6), pp. 8504-8519. doi: 10.1364/OE.27.008504.
  • Yesilkaya, A., Basar, E., Miramirkhani, F., Panayirci, E., Uysal, M. & Haas, H. (2017). “Optical MIMO-OFDM with generalized LED index modulation,” IEEE Trans. Commun., 65(8), pp. 3429–3441. doi: 10.1109/TCOMM.2017.2699964.
  • Zeng, L., et al. (2009). “High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting”. IEEE Journal on Selected Areas in Comm., 27(9), pp. 1654-1662. doi: 10.1109/JSAC.2009.091215.
  • Zhang, J., Björnson, E., Matthaiou, M., Ng, D. W. K., Yang, H. & Love, D. J. (2020). “Prospective Multiple Antenna Technologies for Beyond 5G," IEEE Journal on Selected Areas in Comm., 38(8), pp. 1637-1660. doi: 10.1109/JSAC.2020.3000826.

PERFORMANCE ANALYSIS OF ADAPTIVE MIMO TECHNIQUES FOR ANGULAR DIVERSITY RECEIVER-BASED VISIBLE LIGHT COMMUNICATION

Year 2024, Volume: 20 Issue: 2, 163 - 189, 06.11.2024
https://doi.org/10.56850/jnse.1496134

Abstract

Correlation between the channels is the primary factor that restricts data rates in multiple-input multiple-output visible light communications (MIMO-VLC). Different receiver designs have been proposed to reduce this correlation value, while adaptive modulations that perform better under the correlated channel effect have been studied on the transmitter side. In this study, we conducted a performance analysis of MIMO-VLC systems by utilizing adaptive MIMO modulations at the transmitter side and angular diversity receiver (ADR) structures at the receiver side. As adaptive modulations, created using spatial diversity (SD) and spatial multiplexing (SMP) modulations, SD/SMP switching, adaptive SMP (aSMP), and SD-assisted adaptive SMP (SD-aSMP) are considered. Analytical and simulation results were obtained for achievable data rates in an indoor environment. Cumulative distribution function (CDF) graphs were used to assess the overall performance based on these data rates. GADR has an advantage over ADR in low SNR regions but performs similarly in high SNR regions. The SD-aSMP scheme demonstrated the best performance across all SNR regions as a hybrid modulation, taking advantage of diversity gain in low SNR and multiplexing gain in high SNR regions. The adaptive SMP schemes benefit from increasing the number of LEDs and increasing the elevation angle up to 60 degrees.

References

  • Alsabah, M., et al. (2021) “6G Wireless Communications Networks: A Comprehensive Survey”. IEEE Access, Vol. 9, pp. 148191-148243. doi: 10.1109/ACCESS.2021.3124812.
  • Armstrong, J. (2009). “OFDM for Optical Communications”. Journal of Lightwave Technology, 27(3), pp. 189-204. doi: 10.1109/JLT.2008.2010061.
  • Armstrong, J. & Schmidt, B. J. C. (2008) “Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN”. IEEE Communications Letters, 12(5), pp. 343-345. doi: 10.1109/LCOMM.2008.080193.
  • Armstrong, J., Sekercioglu, Y. A., & Neild, A. (2013). “Visible light positioning: a roadmap for international standardization”. IEEE Communications Magazine, 51(12), pp. 68-73. doi: 10.1109/MCOM.2013.6685759.
  • Celik, Y. (2023). “Location-Based Visible Light Communication”. 31st Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkiye. doi: 10.1109/SIU59756.2023.10223907.
  • Chen, C., Yang, H., Du, P., Zhong, W.-D., Alphones, A., Yang, Y., & Deng, X. (2020). “User-centric MIMO techniques for indoor visible light communication systems”. IEEE Systems Journal, 14(3), pp. 3202–3213. doi: 10.1109/JSYST.2019.2961696.
  • Chen, Z., Basnayaka, D.A. & Haas, H. (2017). “Space division multiple access for optical attocell network using angle diversity transmitters.” Journal of Lightwave Technology, 35, pp. 2118–2131. doi: 10.1109/JLT.2017.2670367.
  • Dixit, V. & Kumar, A. (2020). “Performance analysis of indoor visible light communication system with angle diversity transmitter.” In Proceedings of the IEEE fourth Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020, pp. 1–5. doi: 10.1109/CICT51604.2020.9312087.
  • Fath, T. & Haas, H. (2013). “Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments”. IEEE Transactions on Communications, 61(2), pp. 733-742. doi: 10.1109/TCOMM.2012.120512.110578.
  • Gesbert, D., Shafi, M., Shiu, D., Smith, P. J. & Naguib, A. (2003). “From theory to practice: an overview of MIMO space-time coded wireless systems”. IEEE Journal on Selected Areas in Comm., 21(3), pp. 281-302. doi: 10.1109/JSAC.2003.809458. Guo, F., Yu, F. R., Zhang, H., Li, X., Ji, H. & Leung, V. C. M. (2021). “Enabling Massive IoT Toward 6G: A Comprehensive Survey”. IEEE Internet of Things Journal, 8(15), pp. 11891-11915. doi: 10.1109/JIOT.2021.3063686.
  • Harada, R., Geldard, C. T. & Popoola, W. O. (2023). “Performance Analysis of Angular Diversity Receivers in Visible Light Communications”. IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada. doi: 10.1109/PIMRC56721.2023.10294068.
  • Horunlu, K. & Celik, Y. (2024). “User-Centric Visible Light Communication,” 32nd Signal Processing and Communications Applications Conference (SIU), Mersin, Turkiye, pp. 1-4, doi: 10.1109/SIU61531.2024.10600789. Kahn, J. M. & Barry, J. R. (1997). “Wireless infrared communications”. Proceedings of the IEEE, 85(2), pp. 265-298. doi: 10.1109/5.554222.
  • Luo, P. et al., (2015). “Experimental Demonstration of RGB LED-Based Optical Camera Communications”, IEEE Photonics Journal, 7(5), pp. 1-12. doi: 10.1109/JPHOT.2015.2486680.
  • Nuwanpriya, A., Ho, S. -W., & Chen, C. S. (2014). “Angle diversity receiver for indoor MIMO visible light communications”. IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA. doi: 10.1109/GLOCOMW.2014.7063472.
  • Nuwanpriya, A., Ho, S. -W., & Chen, C. S. (2015). “Indoor MIMO Visible Light Communications: Novel Angle Diversity Receivers for Mobile Users”. IEEE Journal on Selected Areas in Communications, 33(9), pp. 1780-1792. doi: 10.1109/JSAC.2015.2432514.
  • Qin, B., Wen, W., Liu, M., Zhang, Y. & Chen C. (2022). “Indoor MIMO-VLC Using Angle Diversity Transmitters.” Sensors, 22(14), pp. 5436. doi: 10.3390/s22145436.
  • Penrose, R. A. (1955). “Generalized inverse for matrices”. Mathematical Proceedings of the Cambridge Philosophical Society. 51(3) pp. 406-413. doi: 10.1017/S0305004100030401.
  • Shannon, C. E. (1948). “A mathematical theory of communication”. The Bell System Technical Journal, 27(3), pp. 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
  • Su, Y., et al. (2024). “Efficient User-Centric AP Clustering Through Stable UE-AP Matching for Indoor VLC Systems,” IEEE Wireless Communications Letters, 13(7), pp. 1903-1907. doi: 10.1109/LWC.2024.3395511.
  • Tanaka, Y., Komine, T., Haruyama S. & Nakagawa, M. (2001) “Indoor visible communication utilizing plural white LEDs as lighting”. 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001, San Diego, CA, USA doi: 10.1109/PIMRC.2001.965300.
  • Telater, I.E. (1999). “Capacity of multi-antenna Gaussian channels”. European Transactions on Telecomm., 10(6), pp. 585-595. doi: 10.1002/ett.4460100604.
  • Tsonev, D., Videv, S., and Haas, H. (2014). “Light fidelity (Li-Fi): towards all-optical networking”, Proc. SPIE 9007, Broadband Access Communication Technologies VIII, 900702. doi: 10.1117/12.2044649.
  • Vegni, A. M. & Biagi, M. (2019). “Optimal LED placement in indoor VLC networks”. Optics Express, 27(6), pp. 8504-8519. doi: 10.1364/OE.27.008504.
  • Yesilkaya, A., Basar, E., Miramirkhani, F., Panayirci, E., Uysal, M. & Haas, H. (2017). “Optical MIMO-OFDM with generalized LED index modulation,” IEEE Trans. Commun., 65(8), pp. 3429–3441. doi: 10.1109/TCOMM.2017.2699964.
  • Zeng, L., et al. (2009). “High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting”. IEEE Journal on Selected Areas in Comm., 27(9), pp. 1654-1662. doi: 10.1109/JSAC.2009.091215.
  • Zhang, J., Björnson, E., Matthaiou, M., Ng, D. W. K., Yang, H. & Love, D. J. (2020). “Prospective Multiple Antenna Technologies for Beyond 5G," IEEE Journal on Selected Areas in Comm., 38(8), pp. 1637-1660. doi: 10.1109/JSAC.2020.3000826.
There are 26 citations in total.

Details

Primary Language English
Subjects Quantum Engineering Systems (Incl. Computing and Communications)
Journal Section Articles
Authors

Kardelen Horunlu 0009-0009-6152-1399

Yasin Çelik 0000-0001-8972-9970

Publication Date November 6, 2024
Submission Date June 5, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

APA Horunlu, K., & Çelik, Y. (2024). PERFORMANCE ANALYSIS OF ADAPTIVE MIMO TECHNIQUES FOR ANGULAR DIVERSITY RECEIVER-BASED VISIBLE LIGHT COMMUNICATION. Journal of Naval Sciences and Engineering, 20(2), 163-189. https://doi.org/10.56850/jnse.1496134