Research Article
BibTex RIS Cite

Cofinitely Goldie*-Supplemented Modules

Year 2023, , 35 - 42, 30.06.2023
https://doi.org/10.53570/jnt.1260505

Abstract

One of the generalizations of supplemented modules is the Goldie*-supplemented module, defined by Birkenmeier et al. using $\beta^{\ast}$ relation. In this work, we deal with the concept of the cofinitely Goldie*-supplemented modules as a version of Goldie*-supplemented module. A left $R$-module $M$ is called a cofinitely Goldie*-supplemented module if there is a supplement submodule $S$ of $M$ with $C\beta^{\ast}S$, for each cofinite submodule $C$ of $M$. Evidently, Goldie*-supplemented are cofinitely Goldie*-supplemented. Further, if $M$ is cofinitely Goldie*-supplemented, then $M/C$ is cofinitely Goldie*-supplemented, for any submodule $C$ of $M$. If $A$ and $B$ are cofinitely Goldie*-supplemented with $M=A\oplus B$, then $M$ is cofinitely Goldie*-supplemented. Additionally, we investigate some properties of the cofinitely Goldie*-supplemented module and compare this module with supplemented and Goldie*-supplemented modules.

References

  • R. Alizade, G. Bilhan, P. F. Smith, \emph{Modules whose Maximal Submodules have Supplements}, Communication in Algebra 29 (6) (2001) 2389--2405.
  • P. F. Smith, \emph{Finitely Generated Supplemented Modules are Amply Supplemented}, Arabian Journal for Science and Engineering 25 (2) (2000) 69--79.
  • G. Bilhan, \emph{Totally Cofinitely Supplemented Modules}, International Electronic Journal of Algebra 2 (2007) 106--113.
  • R. Alizade, E. Büyükaşık, \emph{Cofinitely Weak Supplemented Modules}, Communication in Algebra 31 (11) (2003) 5377--5390.
  • Y. Talebi, R. Tribak, A. R. M. Hamzekolaee, \emph{On H-Cofinitely Supplemented Modules}, Bulletin of the Iranian Mathematical Society 39 (2) (2013) 325--346.
  • T. Koşan, \emph{$H$-Cofinitely Supplemented Modules}, Vietnam Journal of Mathematics 35 (2) (2007) 215--222.
  • F. Ery{\i}lmaz, Ş. Eren, \emph{On Cofinitely Weak Rad-Supplemented Modules}, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistic 66 (1) (2017) 92--97.
  • G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. S\"{o}kmez, A. Tercan, \emph{Goldie*-Supplemented Mo\-du\-les}, Glasgow Mathematical Journal 52 (A) (2010) 41--52.
  • N. S\"{o}kmez, \emph{Goldie*-Supplemented and Goldie*-Radical Supplemented Modules}, Doctoral Dissertation Ondokuz May{\i}s University (2011) Samsun.
  • Y. Talebi, A. R. Moniri Hamzekolaee, A. Tercan, \emph{Goldie-Rad-Supplemented Modules}, Analele Stiintifice ale Universitatii Ovidius Constanta 22 (3) (2014) 205--218.
  • F. Takıl Mutlu, \emph{Amply (weakly) Goldie-Rad-Supplemented Modules}, Algebra and Discrete Mathematics 22 (1) (2016) 94--101.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Reading, 1991.
  • J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory, Birkh\"{a}user, Basel, 2006.
  • U. Acar, A. Harmanc{\i}, \emph{Principally Supplemented Modules}, Albanian Journal of Mathematics 4 (3) (2010) 79--88.
  • T. Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.
Year 2023, , 35 - 42, 30.06.2023
https://doi.org/10.53570/jnt.1260505

Abstract

References

  • R. Alizade, G. Bilhan, P. F. Smith, \emph{Modules whose Maximal Submodules have Supplements}, Communication in Algebra 29 (6) (2001) 2389--2405.
  • P. F. Smith, \emph{Finitely Generated Supplemented Modules are Amply Supplemented}, Arabian Journal for Science and Engineering 25 (2) (2000) 69--79.
  • G. Bilhan, \emph{Totally Cofinitely Supplemented Modules}, International Electronic Journal of Algebra 2 (2007) 106--113.
  • R. Alizade, E. Büyükaşık, \emph{Cofinitely Weak Supplemented Modules}, Communication in Algebra 31 (11) (2003) 5377--5390.
  • Y. Talebi, R. Tribak, A. R. M. Hamzekolaee, \emph{On H-Cofinitely Supplemented Modules}, Bulletin of the Iranian Mathematical Society 39 (2) (2013) 325--346.
  • T. Koşan, \emph{$H$-Cofinitely Supplemented Modules}, Vietnam Journal of Mathematics 35 (2) (2007) 215--222.
  • F. Ery{\i}lmaz, Ş. Eren, \emph{On Cofinitely Weak Rad-Supplemented Modules}, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistic 66 (1) (2017) 92--97.
  • G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. S\"{o}kmez, A. Tercan, \emph{Goldie*-Supplemented Mo\-du\-les}, Glasgow Mathematical Journal 52 (A) (2010) 41--52.
  • N. S\"{o}kmez, \emph{Goldie*-Supplemented and Goldie*-Radical Supplemented Modules}, Doctoral Dissertation Ondokuz May{\i}s University (2011) Samsun.
  • Y. Talebi, A. R. Moniri Hamzekolaee, A. Tercan, \emph{Goldie-Rad-Supplemented Modules}, Analele Stiintifice ale Universitatii Ovidius Constanta 22 (3) (2014) 205--218.
  • F. Takıl Mutlu, \emph{Amply (weakly) Goldie-Rad-Supplemented Modules}, Algebra and Discrete Mathematics 22 (1) (2016) 94--101.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Reading, 1991.
  • J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory, Birkh\"{a}user, Basel, 2006.
  • U. Acar, A. Harmanc{\i}, \emph{Principally Supplemented Modules}, Albanian Journal of Mathematics 4 (3) (2010) 79--88.
  • T. Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ayşe Tuğba Güroğlu 0000-0001-9306-0296

Publication Date June 30, 2023
Submission Date March 5, 2023
Published in Issue Year 2023

Cite

APA Güroğlu, A. T. (2023). Cofinitely Goldie*-Supplemented Modules. Journal of New Theory(43), 35-42. https://doi.org/10.53570/jnt.1260505
AMA Güroğlu AT. Cofinitely Goldie*-Supplemented Modules. JNT. June 2023;(43):35-42. doi:10.53570/jnt.1260505
Chicago Güroğlu, Ayşe Tuğba. “Cofinitely Goldie*-Supplemented Modules”. Journal of New Theory, no. 43 (June 2023): 35-42. https://doi.org/10.53570/jnt.1260505.
EndNote Güroğlu AT (June 1, 2023) Cofinitely Goldie*-Supplemented Modules. Journal of New Theory 43 35–42.
IEEE A. T. Güroğlu, “Cofinitely Goldie*-Supplemented Modules”, JNT, no. 43, pp. 35–42, June 2023, doi: 10.53570/jnt.1260505.
ISNAD Güroğlu, Ayşe Tuğba. “Cofinitely Goldie*-Supplemented Modules”. Journal of New Theory 43 (June 2023), 35-42. https://doi.org/10.53570/jnt.1260505.
JAMA Güroğlu AT. Cofinitely Goldie*-Supplemented Modules. JNT. 2023;:35–42.
MLA Güroğlu, Ayşe Tuğba. “Cofinitely Goldie*-Supplemented Modules”. Journal of New Theory, no. 43, 2023, pp. 35-42, doi:10.53570/jnt.1260505.
Vancouver Güroğlu AT. Cofinitely Goldie*-Supplemented Modules. JNT. 2023(43):35-42.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).