Research Article
BibTex RIS Cite

Ruled Surfaces of Adjoint Curve with the Modified Orthogonal Frame

Year 2024, , 69 - 82, 31.12.2024
https://doi.org/10.53570/jnt.1583283

Abstract

This paper analyzes several specific ruled surfaces generated by the base curve $\alpha$ and its director curve or the $\alpha$'s adjoint curve $\beta$ and its director curve, where the director curves are frame vectors of the modified orthogonal frame in $E^{3}$. Furthermore, this paper studies the flat or minimal properties of the surfaces, as well as their asymptotic and geodesic curves. Afterward, it exemplifies the theoretical results herein. Finally, this paper discusses the need for further research.

References

  • B. Bükçü, M. K. Karacan, On the modified orthogonal frame with curvature and torsion in 3-space, Mathematical Sciences and Applications E-Notes 4 (1) (2016) 184-188.
  • S. G. Mazlum, S. Şenyurt, M. Bektaş, Salkowski curves and their modified orthogonal frames in $\mathbb {E}^{3} $, Journal of New Theory (40) (2022) 12-26.
  • N. Yüksel, B. Saltık, E. Damar, Parallel curves in Minkowski 3-space, Gümüşhane University Journal of Science and Technology 12 (2) (2022) 480-486.
  • M. K. Saad, N. Yüksel, N. Oğraş, F. Alghamdi, A. A. Abdel-Salam, Geometry of tubular surfaces and their focal surfaces in Euclidean 3-space, AIMS Mathematics 9 (5) (2024) 12479-12493.
  • W. Kühnel, Differential geometry: Curves–surfaces–manifolds, 2nd Edition, American Mathematical Society, Providence, 2006.
  • S. K. Nurkan, İ. A. Güven, M. K. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89 (1) (2019) 155-161.
  • M. Arıkan, S. K. Nurkan, Adjoint curve according to modified orthogonal frame with torsion in 3-space, Uşak University Journal of Science and Natural Sciences 4 (2) (2020) 54-64.
  • S. K. Nurkan, İ. A. Güven, A new approach for Smarandache curves, Turkish Journal of Mathematics and Computer Science 14 (1) (2022) 155-165.
  • A. Çakmak, V. Şahin, Characterizations of adjoint curves according to alternative moving frame, Fundamental Journal of Mathematics and Applications 5 (1) (2022) 42-50.
  • R. A. Hord, Torsion at an inflection point of a space curve, The American Mathematical Monthly 79 (4) (1972) 371-374.
  • T. Sasai, The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations, Tohoku Mathematical Journal 36 (1) (1984) 17-24.
  • T. Sasai, Geometry of analytic space curves with singularities and regular singularities of differential equations, Funkcialaj Ekvacioj 30 (1987) 283-303.
  • K. Eren, H. H. Kosal, Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics 5 (3) (2020) 2027-2039.
  • N. Yüksel, B. Saltık, On inextensible ruled surfaces generated via a curve derived from a curve with constant torsion, AIMS Mathematics 8 (5) (2023) 11312-11324.
  • A. T. Ali, H. S. A. Aziz, A. H. Sorour, \emph{Ruled surfaces generated by some special curves in Euclidean 3-Space, Journal of the Egyptian Mathematical Society 21 (3) (2013) 285-294.
  • N. Yüksel, The ruled surfaces acccording to Bishop frame in Minkowski 3‐space, Abstract and Applied Analysis 2013 (2013) Article ID 810640 5 pages.
  • G. Ş. Atalay, A new approach to special curved surface families according to modified orthogonal frame, AIMS Mathematics 9 (8) (2024) 20662-20676.
  • Y. Li, K. Eren, S. Ersoy, A. Savić, Modified sweeping surfaces in Euclidean 3-Space, Axioms 13 (11) (2024) 800 15 pages.
  • E. Çakıl, S. Gür Mazlum, Ruled surfaces generated by Salkowski curve and its Frenet vectors in Euclidean 3-space, Korean Journal of Mathematics 32 (2) (2024) 259-284.
  • M. P. Do Carmo, Differential geometry of curves and surfaces, 2nd Edition, Dover Publications, New York, 2016.
Year 2024, , 69 - 82, 31.12.2024
https://doi.org/10.53570/jnt.1583283

Abstract

References

  • B. Bükçü, M. K. Karacan, On the modified orthogonal frame with curvature and torsion in 3-space, Mathematical Sciences and Applications E-Notes 4 (1) (2016) 184-188.
  • S. G. Mazlum, S. Şenyurt, M. Bektaş, Salkowski curves and their modified orthogonal frames in $\mathbb {E}^{3} $, Journal of New Theory (40) (2022) 12-26.
  • N. Yüksel, B. Saltık, E. Damar, Parallel curves in Minkowski 3-space, Gümüşhane University Journal of Science and Technology 12 (2) (2022) 480-486.
  • M. K. Saad, N. Yüksel, N. Oğraş, F. Alghamdi, A. A. Abdel-Salam, Geometry of tubular surfaces and their focal surfaces in Euclidean 3-space, AIMS Mathematics 9 (5) (2024) 12479-12493.
  • W. Kühnel, Differential geometry: Curves–surfaces–manifolds, 2nd Edition, American Mathematical Society, Providence, 2006.
  • S. K. Nurkan, İ. A. Güven, M. K. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89 (1) (2019) 155-161.
  • M. Arıkan, S. K. Nurkan, Adjoint curve according to modified orthogonal frame with torsion in 3-space, Uşak University Journal of Science and Natural Sciences 4 (2) (2020) 54-64.
  • S. K. Nurkan, İ. A. Güven, A new approach for Smarandache curves, Turkish Journal of Mathematics and Computer Science 14 (1) (2022) 155-165.
  • A. Çakmak, V. Şahin, Characterizations of adjoint curves according to alternative moving frame, Fundamental Journal of Mathematics and Applications 5 (1) (2022) 42-50.
  • R. A. Hord, Torsion at an inflection point of a space curve, The American Mathematical Monthly 79 (4) (1972) 371-374.
  • T. Sasai, The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations, Tohoku Mathematical Journal 36 (1) (1984) 17-24.
  • T. Sasai, Geometry of analytic space curves with singularities and regular singularities of differential equations, Funkcialaj Ekvacioj 30 (1987) 283-303.
  • K. Eren, H. H. Kosal, Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics 5 (3) (2020) 2027-2039.
  • N. Yüksel, B. Saltık, On inextensible ruled surfaces generated via a curve derived from a curve with constant torsion, AIMS Mathematics 8 (5) (2023) 11312-11324.
  • A. T. Ali, H. S. A. Aziz, A. H. Sorour, \emph{Ruled surfaces generated by some special curves in Euclidean 3-Space, Journal of the Egyptian Mathematical Society 21 (3) (2013) 285-294.
  • N. Yüksel, The ruled surfaces acccording to Bishop frame in Minkowski 3‐space, Abstract and Applied Analysis 2013 (2013) Article ID 810640 5 pages.
  • G. Ş. Atalay, A new approach to special curved surface families according to modified orthogonal frame, AIMS Mathematics 9 (8) (2024) 20662-20676.
  • Y. Li, K. Eren, S. Ersoy, A. Savić, Modified sweeping surfaces in Euclidean 3-Space, Axioms 13 (11) (2024) 800 15 pages.
  • E. Çakıl, S. Gür Mazlum, Ruled surfaces generated by Salkowski curve and its Frenet vectors in Euclidean 3-space, Korean Journal of Mathematics 32 (2) (2024) 259-284.
  • M. P. Do Carmo, Differential geometry of curves and surfaces, 2nd Edition, Dover Publications, New York, 2016.
There are 20 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Burçin Saltık Baek 0000-0001-5174-6484

Esra Damar 0000-0002-0743-8545

Nurdan Oğraş 0000-0002-5539-4890

Nural Yüksel 0000-0003-3360-5148

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 11, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024

Cite

APA Saltık Baek, B., Damar, E., Oğraş, N., Yüksel, N. (2024). Ruled Surfaces of Adjoint Curve with the Modified Orthogonal Frame. Journal of New Theory(49), 69-82. https://doi.org/10.53570/jnt.1583283
AMA Saltık Baek B, Damar E, Oğraş N, Yüksel N. Ruled Surfaces of Adjoint Curve with the Modified Orthogonal Frame. JNT. December 2024;(49):69-82. doi:10.53570/jnt.1583283
Chicago Saltık Baek, Burçin, Esra Damar, Nurdan Oğraş, and Nural Yüksel. “Ruled Surfaces of Adjoint Curve With the Modified Orthogonal Frame”. Journal of New Theory, no. 49 (December 2024): 69-82. https://doi.org/10.53570/jnt.1583283.
EndNote Saltık Baek B, Damar E, Oğraş N, Yüksel N (December 1, 2024) Ruled Surfaces of Adjoint Curve with the Modified Orthogonal Frame. Journal of New Theory 49 69–82.
IEEE B. Saltık Baek, E. Damar, N. Oğraş, and N. Yüksel, “Ruled Surfaces of Adjoint Curve with the Modified Orthogonal Frame”, JNT, no. 49, pp. 69–82, December 2024, doi: 10.53570/jnt.1583283.
ISNAD Saltık Baek, Burçin et al. “Ruled Surfaces of Adjoint Curve With the Modified Orthogonal Frame”. Journal of New Theory 49 (December 2024), 69-82. https://doi.org/10.53570/jnt.1583283.
JAMA Saltık Baek B, Damar E, Oğraş N, Yüksel N. Ruled Surfaces of Adjoint Curve with the Modified Orthogonal Frame. JNT. 2024;:69–82.
MLA Saltık Baek, Burçin et al. “Ruled Surfaces of Adjoint Curve With the Modified Orthogonal Frame”. Journal of New Theory, no. 49, 2024, pp. 69-82, doi:10.53570/jnt.1583283.
Vancouver Saltık Baek B, Damar E, Oğraş N, Yüksel N. Ruled Surfaces of Adjoint Curve with the Modified Orthogonal Frame. JNT. 2024(49):69-82.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).