Research Article
BibTex RIS Cite

A Novel Algorithm for Permanent Computation

Year 2025, Issue: 51, 42 - 51, 30.06.2025
https://doi.org/10.53570/jnt.1675521

Abstract

This study computes the permanent of a square matrix by reducing it to triangular form. To achieve the triangularization of a matrix, this paper employs additive row operations. Although applying an additive row operation does not alter the determinant, it does affect the permanent, thereby increasing the complexity of the computational process. This difficulty has discouraged previous attempts to compute the permanent via triangularization. This paper addresses this challenge and introduces a novel approach for computing the permanent of a square matrix.

References

  • T. C. Wei, S. Severini, Matrix permanent and quantum entanglement of permutation invariant states, Journal of Mathematical Physics 51 (9) (2010) 092203.
  • R. A. Brualdi, D. Cvetkovic, A Combinatorial Approach to Matrix Theory and its Applications, Chapman and Hall/CRC, Boca Raton, 2008.
  • L. G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8 (2) (1979) 189-201.
  • L. Troyansky, N. Tishby, Permanent uncertainty: On the quantum evaluation of the determinant and the permanent of a matrix, in: T. Toffoli, M. Blafore (Eds.), Proceedings of the 4th Workshop on Physics and Computation (PhysComp '96), Boston, 1996, pp. 1-5.
  • H. J. Ryser, Combinatorial mathematics, The Mathematical Association of America, 1963.
  • A. Nijenhuis, H. S. Wilf, Combinatorial algorithms: For computers and calculators, 2nd Edition, Academic Press, 1978.
  • D. G. Glynn, The permanent of a square matrix, European Journal of Combinatorics 31 (7) (2010) 1887-1891.
  • A. Z. Kucuk, On the evaluation of rectangular matrix permanents: A symmetric and combinatorial analysis, Symmetry 17 (4) (2025) 507.
  • A. Baykasoglu, A review and analysis of "graph theoretical-matrix permanent" approach to decision making with example applications, Artificial Intelligence Review 42 (2014) 573-605.
  • U. Chabaud, A. Deshpande, S. Mehraban, Quantum-inspired permanent identities, Quantum 6 (2022) 877.
  • C. Masschelein, Efficient evaluation of Rectangular matrix permanents, Doctoral Dissertation McMaster University (2024) Hamilton.
  • D. Elbek, F. Tagyaran, B. Ugur, K. Kaya, SUperman: Efficient permanent computation on GPUs (2025). https://arxiv.org/abs/2502.16577, Accessed 10 Apr 2025.
  • X. Niu, S. Su, J. Zheng, A new fast computation of a permanent, in: 2nd International Conference on Communication, Network and Artificial Intelligence, Vol. 790 of IOP Conference Series: Materials Science and Engineering, IOP Publishing, Guangzhou, 2020, 012057.
  • A. Z. Kucuk, T. Sozer, The effect of the additive row operation on the permanent, Journal of New Theory (42) (2023) 8-13.

Year 2025, Issue: 51, 42 - 51, 30.06.2025
https://doi.org/10.53570/jnt.1675521

Abstract

References

  • T. C. Wei, S. Severini, Matrix permanent and quantum entanglement of permutation invariant states, Journal of Mathematical Physics 51 (9) (2010) 092203.
  • R. A. Brualdi, D. Cvetkovic, A Combinatorial Approach to Matrix Theory and its Applications, Chapman and Hall/CRC, Boca Raton, 2008.
  • L. G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8 (2) (1979) 189-201.
  • L. Troyansky, N. Tishby, Permanent uncertainty: On the quantum evaluation of the determinant and the permanent of a matrix, in: T. Toffoli, M. Blafore (Eds.), Proceedings of the 4th Workshop on Physics and Computation (PhysComp '96), Boston, 1996, pp. 1-5.
  • H. J. Ryser, Combinatorial mathematics, The Mathematical Association of America, 1963.
  • A. Nijenhuis, H. S. Wilf, Combinatorial algorithms: For computers and calculators, 2nd Edition, Academic Press, 1978.
  • D. G. Glynn, The permanent of a square matrix, European Journal of Combinatorics 31 (7) (2010) 1887-1891.
  • A. Z. Kucuk, On the evaluation of rectangular matrix permanents: A symmetric and combinatorial analysis, Symmetry 17 (4) (2025) 507.
  • A. Baykasoglu, A review and analysis of "graph theoretical-matrix permanent" approach to decision making with example applications, Artificial Intelligence Review 42 (2014) 573-605.
  • U. Chabaud, A. Deshpande, S. Mehraban, Quantum-inspired permanent identities, Quantum 6 (2022) 877.
  • C. Masschelein, Efficient evaluation of Rectangular matrix permanents, Doctoral Dissertation McMaster University (2024) Hamilton.
  • D. Elbek, F. Tagyaran, B. Ugur, K. Kaya, SUperman: Efficient permanent computation on GPUs (2025). https://arxiv.org/abs/2502.16577, Accessed 10 Apr 2025.
  • X. Niu, S. Su, J. Zheng, A new fast computation of a permanent, in: 2nd International Conference on Communication, Network and Artificial Intelligence, Vol. 790 of IOP Conference Series: Materials Science and Engineering, IOP Publishing, Guangzhou, 2020, 012057.
  • A. Z. Kucuk, T. Sozer, The effect of the additive row operation on the permanent, Journal of New Theory (42) (2023) 8-13.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Ahmet Zahid Küçük 0000-0001-6816-6478

Abdullah Talha Sözer 0000-0002-7855-6119

Murat Düz 0000-0003-2387-4045

Submission Date April 15, 2025
Acceptance Date June 20, 2025
Early Pub Date June 30, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Issue: 51

Cite

APA Küçük, A. Z., Sözer, A. T., & Düz, M. (2025). A Novel Algorithm for Permanent Computation. Journal of New Theory(51), 42-51. https://doi.org/10.53570/jnt.1675521
AMA Küçük AZ, Sözer AT, Düz M. A Novel Algorithm for Permanent Computation. JNT. June 2025;(51):42-51. doi:10.53570/jnt.1675521
Chicago Küçük, Ahmet Zahid, Abdullah Talha Sözer, and Murat Düz. “A Novel Algorithm for Permanent Computation”. Journal of New Theory, no. 51 (June 2025): 42-51. https://doi.org/10.53570/jnt.1675521.
EndNote Küçük AZ, Sözer AT, Düz M (June 1, 2025) A Novel Algorithm for Permanent Computation. Journal of New Theory 51 42–51.
IEEE A. Z. Küçük, A. T. Sözer, and M. Düz, “A Novel Algorithm for Permanent Computation”, JNT, no. 51, pp. 42–51, June2025, doi: 10.53570/jnt.1675521.
ISNAD Küçük, Ahmet Zahid et al. “A Novel Algorithm for Permanent Computation”. Journal of New Theory 51 (June2025), 42-51. https://doi.org/10.53570/jnt.1675521.
JAMA Küçük AZ, Sözer AT, Düz M. A Novel Algorithm for Permanent Computation. JNT. 2025;:42–51.
MLA Küçük, Ahmet Zahid et al. “A Novel Algorithm for Permanent Computation”. Journal of New Theory, no. 51, 2025, pp. 42-51, doi:10.53570/jnt.1675521.
Vancouver Küçük AZ, Sözer AT, Düz M. A Novel Algorithm for Permanent Computation. JNT. 2025(51):42-51.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).