Research Article
BibTex RIS Cite

$h^{\Gamma}$-Open Sets in Ideal Topological Spaces

Year 2025, Issue: 53, 14 - 23, 31.12.2025
https://doi.org/10.53570/jnt.1747410

Abstract

This paper first introduces $h^{\Gamma}$-open sets by utilizing the local closure function in an ideal topological space. Afterward, it researches the relation between $h^{\Gamma}$-open sets and $h^{\star}$-open sets. Then, it concludes that $h^{\Gamma}$-open sets coincide with $h^{\star}$-open sets. Therefore, the present paper obtains that $h^{\Gamma}$-open sets have the properties which are satisfied by $h^{\star}$-open sets. Additionally, it defines the notion of the $h^{\star}$-kernel of a set via $h\mathfrak{I}$-open sets and investigates some of its basic properties.

References

  • R. Vaidyanathaswamy, The localisation theory in set-topology, Proceedings of the Indian Academy of Sciences - Section A 20 (1944) 51--61.
  • K. Kuratowski, Topology, Vol. I, Academic Press, 1966.
  • D. Jankovic, T. R. Hamlett, New topologies from old via ideals, The American Mathematical Monthly 97 (4) (1990) 295--310.
  • A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad Journal of Mathematics 43 (2) (2013) 139--149.
  • F. Abbas, $h$-open sets in topological spaces, Boletim da Sociedade Paranaense de Matematica 41 (2023) 1--9.
  • A. Açıkgöz, T. Noiri, B. Gölpınar, On $h$-local functions in ideal topological spaces, Mathematica 65 (1) (2023) 3--11.
  • A. Açıkgöz, T. Noiri, A note on extensions of open sets by idealizations, Romanian Journal of Mathematics and Computer Science 13 (1) (2023) 43--48.
  • Z. T. Abdulqader, R. B. Esmaeel, N. E. Arif, $\mathcal{L}$-open set and some related concepts, Journal of Discrete Mathematical Sciences and Cryptography 27 (5) (2024) 1715--1721.
  • A. Açıkgöz, F. Esenbel, N-Methods, Axioms 14 (6) (2025) 409.
  • M. Mrsevic, On pairwise $R_{0}$ and pairwise $R_{1}$ bitopological spaces, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie 30 (2) (1986) 141--148.
  • H. Maki, Generalized $\wedge$-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement 1 (1986) 139--146.
  • F. G. Arenas, J. Dontchev, M. Ganster, On $\lambda$-sets and the dual of generalized continuity, Questions and Answers in General Topology 15 (1) (1997) 3--13.
  • M. Caldas, S. Jafari, G. Navalagi, More on $\lambda$-closed sets in topological spaces, Revista Colombiana de Matemáticas 41 (2) (2007) 355--369.
  • J. Dontchev, H. Maki, On $\theta$-generalized closed sets, International Journal of Mathematics and Mathematical Sciences 22 (2) (1999) 239--249.
  • M. Caldas, S. Jafari, On some low separation axioms via $\lambda$-open and $\lambda$-closure operator, Rendiconti del Circolo Matematico di Palermo 54 (2005) 195--208.
  • A. Açıkgöz, T. Noiri, Idealizability of some expansions of open sets, Mathematica 67 (90) (1) (2025) 3--12.
  • M. Caldas, S. Jafari, On some applications of $b$-open sets in topological spaces, Kochi Journal of Mathematics 2 (2007) 11--19.
  • N. S. Noorie, N. Goyal, On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology 52 (4) (2017) 226--228.
  • N. Goyal, N. S. Noorie, $\theta$-closure and $T_{2\frac{1}{2}}$ spaces via ideals, Italian Journal of Pure and Applied Mathematics (41) (2019) 571--583.
  • A. N. Tunç, S. Özen Yıldırım, On a topological operator via local closure function, Turkish Journal of Mathematics and Computer Science 15 (2) (2023) 227--236.
There are 20 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Research Article
Authors

Sena Özen Yıldırım 0000-0002-4460-2949

Ayşe Nur Tunç 0000-0003-3439-4223

Submission Date July 21, 2025
Acceptance Date November 20, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Issue: 53

Cite

APA Özen Yıldırım, S., & Tunç, A. N. (2025). $h^{\Gamma}$-Open Sets in Ideal Topological Spaces. Journal of New Theory(53), 14-23. https://doi.org/10.53570/jnt.1747410
AMA Özen Yıldırım S, Tunç AN. $h^{\Gamma}$-Open Sets in Ideal Topological Spaces. JNT. December 2025;(53):14-23. doi:10.53570/jnt.1747410
Chicago Özen Yıldırım, Sena, and Ayşe Nur Tunç. “$h^{\Gamma}$-Open Sets in Ideal Topological Spaces”. Journal of New Theory, no. 53 (December 2025): 14-23. https://doi.org/10.53570/jnt.1747410.
EndNote Özen Yıldırım S, Tunç AN (December 1, 2025) $h^{\Gamma}$-Open Sets in Ideal Topological Spaces. Journal of New Theory 53 14–23.
IEEE S. Özen Yıldırım and A. N. Tunç, “$h^{\Gamma}$-Open Sets in Ideal Topological Spaces”, JNT, no. 53, pp. 14–23, December2025, doi: 10.53570/jnt.1747410.
ISNAD Özen Yıldırım, Sena - Tunç, Ayşe Nur. “$h^{\Gamma}$-Open Sets in Ideal Topological Spaces”. Journal of New Theory 53 (December2025), 14-23. https://doi.org/10.53570/jnt.1747410.
JAMA Özen Yıldırım S, Tunç AN. $h^{\Gamma}$-Open Sets in Ideal Topological Spaces. JNT. 2025;:14–23.
MLA Özen Yıldırım, Sena and Ayşe Nur Tunç. “$h^{\Gamma}$-Open Sets in Ideal Topological Spaces”. Journal of New Theory, no. 53, 2025, pp. 14-23, doi:10.53570/jnt.1747410.
Vancouver Özen Yıldırım S, Tunç AN. $h^{\Gamma}$-Open Sets in Ideal Topological Spaces. JNT. 2025(53):14-23.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).