Research Article
BibTex RIS Cite

Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis

Year 2025, Issue: 53, 24 - 35, 31.12.2025
https://doi.org/10.53570/jnt.1763538

Abstract

Split-complex numbers $\mathbb{R}^{1,1}$ are an extension of the real numbers $\mathbb{R}$, forming a commutative ring generated by two real numbers and featuring two zero divisors. By utilizing the properties of split-complex numbers, this paper mainly presents criteria for the convergence of series with positive terms in split-complex analysis, including proofs of the comparison criterion, the D'Alembert criterion, the Cauchy criterion, the Cauchy-Hadamard criterion, and the Raabe criterion on $\mathbb{R}^{1,1+} \setminus \{0\}$. The results demonstrate that the general criteria for series with positive terms in real analysis are still applicable in split-complex analysis. The results obtained further refine the theoretical framework of split-complex numbers.

References

  • M. Libine, Hyperbolic Cauchy Integral Formula for the Split Complex Numbers (2007), https://arxiv.org/abs/0712.0375, Accessed 15 Jul 2025.
  • S. Deckelman, B. Robson, Split-complex numbers and Dirac bra-kets, Communications in Information and Systems 14 (3) (2014) 135--159.
  • J. A. Emanuello, C. A. Nolder, Projective compactification of $\mathbb{R}^{1,1}$ and its Möbius geometry, Complex Analysis and Operator Theory 9 (2015) 329--354.
  • A. S. Balankin, Physics in space-time with scale-dependent metrics, Physics Letters A 377 (25-27) (2013) 1606--1610.
  • M. P. Goswami, N. Jha, Triple Laplace transform in bicomplex space with application, Mathematics and Statistics 8 (4) (2020) 443--450.
  • A. Banerjee, On the quantum mechanics of bicomplex Hamiltonian system, Annals of Physics 377 (2017) 493--505.
  • A. Banerjee, R. Deb, Bicomplex modules with indefinite inner product, Advances in Applied Clifford Algebras 29 (3) (2019) 55.
  • M. P. Goswami, R. Kumar, Riemann-Liouville fractional operators of bicomplex order and its properties, Mathematical Methods in the Applied Sciences 45 (10) (2022) 5699--5720.
  • W. Johnston, C. M. Makdad, A comparison of norms: Bicomplex root and ratio tests and an extension theorem, The American Mathematical Monthly 128 (6) (2021) 525--533.
  • K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic functions in the plane and n-dimensional space, Birkhäuser Basel, 2008.
  • F. Colombo, I. Sabadini, F. Sommen, D. C. Struppa, Analysis of Dirac systems and computational algebra, Springer Science & Business Media, 2004.
  • H. Çakır, M. Özdemir, Explicit formulas for exponential of 2×2 split-complex matrices, Communications Faculty of Science University of Ankara Series A1 Mathematics and Statistics 71 (2) (2022) 518--532.
  • İ. Öztürk, M. Özdemir, Affine transformations of hyperbolic number plane, Boletín de la Sociedad Matemática Mexicana 28 (3) (2022) 61.
  • B. H. Cui, Z. Huang, W. Pan, The Abel theory of power series in split-complex analysis, Highlights in Science, Engineering and Technology 62 (2023) 9--16.
  • J. A. Emanuello, Analysis of functions of split-complex, multicomplex, and split-quaternionic variables and their associated conformal geometries, Doctoral Dissertation The Florida State University (2015) Tallahassee.
  • M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holomorphic functions: The algebra, geometry and analysis of bicomplex numbers, Birkhäuser Cham, 2015.
  • G. Sobczyk, The hyperbolic number plane, The College Mathematics Journal 26 (4) (1995) 268--280.
There are 17 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Zhishang Huang 0009-0009-4399-2488

Liudi Peng 0009-0003-4883-1321

Yongyi Gu 0000-0002-6651-1714

Submission Date August 12, 2025
Acceptance Date November 9, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Issue: 53

Cite

APA Huang, Z., Peng, L., & Gu, Y. (2025). Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis. Journal of New Theory(53), 24-35. https://doi.org/10.53570/jnt.1763538
AMA Huang Z, Peng L, Gu Y. Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis. JNT. December 2025;(53):24-35. doi:10.53570/jnt.1763538
Chicago Huang, Zhishang, Liudi Peng, and Yongyi Gu. “Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis”. Journal of New Theory, no. 53 (December 2025): 24-35. https://doi.org/10.53570/jnt.1763538.
EndNote Huang Z, Peng L, Gu Y (December 1, 2025) Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis. Journal of New Theory 53 24–35.
IEEE Z. Huang, L. Peng, and Y. Gu, “Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis”, JNT, no. 53, pp. 24–35, December2025, doi: 10.53570/jnt.1763538.
ISNAD Huang, Zhishang et al. “Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis”. Journal of New Theory 53 (December2025), 24-35. https://doi.org/10.53570/jnt.1763538.
JAMA Huang Z, Peng L, Gu Y. Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis. JNT. 2025;:24–35.
MLA Huang, Zhishang et al. “Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis”. Journal of New Theory, no. 53, 2025, pp. 24-35, doi:10.53570/jnt.1763538.
Vancouver Huang Z, Peng L, Gu Y. Study on the Convergence and Divergence of Positive Series in Split-Complex Analysis. JNT. 2025(53):24-35.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).