Some Properties of the $q$-Vietoris Number Sequence
Year 2025,
Issue: 53, 36 - 46, 31.12.2025
Zehra Betül Gür
,
Serpil Halıcı
Abstract
This study aims to present the $q$-Vietoris numbers, a generalization of the Vietoris numbers, by using quantum calculus ($q$-calculus) and to investigate some of their algebraic properties, such as recurrence relations, a representation with the $q$-Gamma function, and some essential identities. Furthermore, it derives some finite summation formulas involving the $q$-harmonic numbers and the $q$-Vietoris numbers. Finally, the study discusses the need for further research.
Supporting Institution
Scientific and Technological Research Council of Türkiye (TÜBİTAK)
Thanks
The first author is supported by the 2211-A Domestic Doctoral Fellowship by the Scientific and Technological Research Council of Türkiye (TÜBİTAK), Grant number: 1649B032102384.
References
-
T. Koshy, Fibonacci and Lucas Numbers with applications, Vol. 2, John Wiley & Sons, 2018.
-
T. Koshy, Pell and Pell–Lucas numbers with applications, New York, Springer, 2014.
-
I. Caçao, M. I. Falcao, H. R. Malonek, Matrix representations of a special polynomial sequence in arbitrary dimension, Computational Methods and Function Theory 12 (2) (2012) 371--391.
-
L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen, Springer, 1958.
-
N. Gürses, D. Çağlar Çay, Toward the determination of Vietoris-like polynomials, Journal of New Theory (51) (2025) 10--25.
-
I. Caçao, M. I. Falcao, H. R. Malonek, F. Miranda, G. Tomaz, On Appell-Vietoris polynomials, International Conference on Computational Science and Its Applications, Hanoi, 2024, pp. 302–-316.
-
S. Halıcı, Z. B. Gür, A note on weighted sums of Vietoris' sequence, Mathematica Montisnigri LXI (2024) 44--57.
-
S. Halıcı, Z. B. Gür, On complex sequence of Vietoris' numbers and their finite sums, VI International Conference on Mathematics and its Applications in Science and Engineering ICMASE, Plovdiv, 2025, p. 77.
-
P. Catarino, R. A. Almeida, A note on Vietoris' number sequence, Mediterranean Journal of Mathematics 19 (1) (2022) 41.
-
T. Koshy, Catalan numbers with applications, Oxford University Press, 2008.
-
P. Catarino, R. de Almeida, On a quaternionic sequence with Vietoris' numbers, Filomat 35 (4) (2021) 1065--1086.
-
I. Caçao, M. I. Falcao, H. R. Malonek, On generalized Vietoris' number sequences, Discrete Applied Mathematics 269 (2019) 77--85.
-
N. Gürses, G. Y. Saçlı, S. Yüce, On Vietoris' hybrid number sequence, Turkish Journal of Mathematics 48 (4) (2024) 658--672.
-
R. Askey, J. Steinig, Some positive trigonometric sums, Transactions of the American Mathematical Society 187 (1974) 295--307.
-
S. Ruscheweyh, L. Salinas, Stable functions and Vietoris' theorem, Journal of Mathematical Analysis and Applications 291 (2) (2004) 596--604.
-
I. Caçao, M. I. Falcao, H. R. Malonek, Hypercomplex polynomials, Vietoris' rational numbers and a related integer numbers sequence, Complex Analysis and Operator Theory 11 (2017) 1059--1076.
-
V. Kac, P. Cheung, Quantum calculus, Springer, 2002.
-
W. Koepf, Hypergeometric summation, 2nd Edition, Springer Universitext Series, 2014.
-
A. Taane, I. E. Djellas, M. Mekkaoui, On some nested sums involving q-Fibonacci numbers, Palestine Journal of Mathematics 12 (2) (2023) 183--193.
-
E. Munarini, Generalized q-Fibonacci numbers, The Fibonacci Quarterly 43 (3) (2005) 234--242.
-
F. Torunbalcı Aydın, q-Fibonacci bicomplex and q-Lucas bicomplex numbers, Notes on Number Theory and Discrete Mathematics 28 (2) (2022) 261--275.
-
H. Pan, Congruences for $q$-Lucas numbers, The Electronic Journal of Combinatorics 20 (2) (2013) P29.
-
T. Mansour, M. Shattuck, Restricted partitions and $q$-Pell numbers, Central European Journal of Mathematics 9 (2) (2011) 346--355.
-
J. Fürlinger, J. Hofbauer, $q$-Catalan numbers, Journal of Combinatorial Theory, Series A 40 (2) (1985) 248--264.
-
J. Thomae, Beitrage zur theorie der durch die Heinesche Reihe: Darstellbaren functionen, Journal für die reine und angewandte Mathematik 70 (1869) 258--281.
-
R. Askey, The $q$-gamma and $q$-beta functions, Applicable Analysis 8 (2) (2007) 125--141.
-
W. S. Chung, T. Kim, T. Mansour, The q-deformed gamma function and q-deformed polygamma function, Bulletin of the Korean Mathematical Society 51 (4) (2014) 1155--1161.
-
T. Mansour, M. Shattuck, C. Song, q-Analogs of identities involving harmonic numbers and binomial coefficients, Applications and Applied Mathematics: An International Journal (AAM) 7 (1) (2012) 22--36.
-
N. Ömür, Z. B. Gür, S. Koparal, Congruences with q-generalized Catalan numbers and q-harmonic numbers, Hacettepe Journal of Mathematics and Statistics 51 (3) (2022) 712--724.