Research Article
BibTex RIS Cite

Some Properties of the $q$-Vietoris Number Sequence

Year 2025, Issue: 53, 36 - 46, 31.12.2025
https://doi.org/10.53570/jnt.1778125

Abstract

This study aims to present the $q$-Vietoris numbers, a generalization of the Vietoris numbers, by using quantum calculus ($q$-calculus) and to investigate some of their algebraic properties, such as recurrence relations, a representation with the $q$-Gamma function, and some essential identities. Furthermore, it derives some finite summation formulas involving the $q$-harmonic numbers and the $q$-Vietoris numbers. Finally, the study discusses the need for further research.

Supporting Institution

Scientific and Technological Research Council of Türkiye (TÜBİTAK)

Thanks

The first author is supported by the 2211-A Domestic Doctoral Fellowship by the Scientific and Technological Research Council of Türkiye (TÜBİTAK), Grant number: 1649B032102384.

References

  • T. Koshy, Fibonacci and Lucas Numbers with applications, Vol. 2, John Wiley & Sons, 2018.
  • T. Koshy, Pell and Pell–Lucas numbers with applications, New York, Springer, 2014.
  • I. Caçao, M. I. Falcao, H. R. Malonek, Matrix representations of a special polynomial sequence in arbitrary dimension, Computational Methods and Function Theory 12 (2) (2012) 371--391.
  • L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen, Springer, 1958.
  • N. Gürses, D. Çağlar Çay, Toward the determination of Vietoris-like polynomials, Journal of New Theory (51) (2025) 10--25.
  • I. Caçao, M. I. Falcao, H. R. Malonek, F. Miranda, G. Tomaz, On Appell-Vietoris polynomials, International Conference on Computational Science and Its Applications, Hanoi, 2024, pp. 302–-316.
  • S. Halıcı, Z. B. Gür, A note on weighted sums of Vietoris' sequence, Mathematica Montisnigri LXI (2024) 44--57.
  • S. Halıcı, Z. B. Gür, On complex sequence of Vietoris' numbers and their finite sums, VI International Conference on Mathematics and its Applications in Science and Engineering ICMASE, Plovdiv, 2025, p. 77.
  • P. Catarino, R. A. Almeida, A note on Vietoris' number sequence, Mediterranean Journal of Mathematics 19 (1) (2022) 41.
  • T. Koshy, Catalan numbers with applications, Oxford University Press, 2008.
  • P. Catarino, R. de Almeida, On a quaternionic sequence with Vietoris' numbers, Filomat 35 (4) (2021) 1065--1086.
  • I. Caçao, M. I. Falcao, H. R. Malonek, On generalized Vietoris' number sequences, Discrete Applied Mathematics 269 (2019) 77--85.
  • N. Gürses, G. Y. Saçlı, S. Yüce, On Vietoris' hybrid number sequence, Turkish Journal of Mathematics 48 (4) (2024) 658--672.
  • R. Askey, J. Steinig, Some positive trigonometric sums, Transactions of the American Mathematical Society 187 (1974) 295--307.
  • S. Ruscheweyh, L. Salinas, Stable functions and Vietoris' theorem, Journal of Mathematical Analysis and Applications 291 (2) (2004) 596--604.
  • I. Caçao, M. I. Falcao, H. R. Malonek, Hypercomplex polynomials, Vietoris' rational numbers and a related integer numbers sequence, Complex Analysis and Operator Theory 11 (2017) 1059--1076.
  • V. Kac, P. Cheung, Quantum calculus, Springer, 2002.
  • W. Koepf, Hypergeometric summation, 2nd Edition, Springer Universitext Series, 2014.
  • A. Taane, I. E. Djellas, M. Mekkaoui, On some nested sums involving q-Fibonacci numbers, Palestine Journal of Mathematics 12 (2) (2023) 183--193.
  • E. Munarini, Generalized q-Fibonacci numbers, The Fibonacci Quarterly 43 (3) (2005) 234--242.
  • F. Torunbalcı Aydın, q-Fibonacci bicomplex and q-Lucas bicomplex numbers, Notes on Number Theory and Discrete Mathematics 28 (2) (2022) 261--275.
  • H. Pan, Congruences for $q$-Lucas numbers, The Electronic Journal of Combinatorics 20 (2) (2013) P29.
  • T. Mansour, M. Shattuck, Restricted partitions and $q$-Pell numbers, Central European Journal of Mathematics 9 (2) (2011) 346--355.
  • J. Fürlinger, J. Hofbauer, $q$-Catalan numbers, Journal of Combinatorial Theory, Series A 40 (2) (1985) 248--264.
  • J. Thomae, Beitrage zur theorie der durch die Heinesche Reihe: Darstellbaren functionen, Journal für die reine und angewandte Mathematik 70 (1869) 258--281.
  • R. Askey, The $q$-gamma and $q$-beta functions, Applicable Analysis 8 (2) (2007) 125--141.
  • W. S. Chung, T. Kim, T. Mansour, The q-deformed gamma function and q-deformed polygamma function, Bulletin of the Korean Mathematical Society 51 (4) (2014) 1155--1161.
  • T. Mansour, M. Shattuck, C. Song, q-Analogs of identities involving harmonic numbers and binomial coefficients, Applications and Applied Mathematics: An International Journal (AAM) 7 (1) (2012) 22--36.
  • N. Ömür, Z. B. Gür, S. Koparal, Congruences with q-generalized Catalan numbers and q-harmonic numbers, Hacettepe Journal of Mathematics and Statistics 51 (3) (2022) 712--724.
There are 29 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Zehra Betül Gür 0000-0002-3685-4222

Serpil Halıcı 0000-0002-8071-0437

Submission Date September 5, 2025
Acceptance Date November 17, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Issue: 53

Cite

APA Gür, Z. B., & Halıcı, S. (2025). Some Properties of the $q$-Vietoris Number Sequence. Journal of New Theory(53), 36-46. https://doi.org/10.53570/jnt.1778125
AMA Gür ZB, Halıcı S. Some Properties of the $q$-Vietoris Number Sequence. JNT. December 2025;(53):36-46. doi:10.53570/jnt.1778125
Chicago Gür, Zehra Betül, and Serpil Halıcı. “Some Properties of the $q$-Vietoris Number Sequence”. Journal of New Theory, no. 53 (December 2025): 36-46. https://doi.org/10.53570/jnt.1778125.
EndNote Gür ZB, Halıcı S (December 1, 2025) Some Properties of the $q$-Vietoris Number Sequence. Journal of New Theory 53 36–46.
IEEE Z. B. Gür and S. Halıcı, “Some Properties of the $q$-Vietoris Number Sequence”, JNT, no. 53, pp. 36–46, December2025, doi: 10.53570/jnt.1778125.
ISNAD Gür, Zehra Betül - Halıcı, Serpil. “Some Properties of the $q$-Vietoris Number Sequence”. Journal of New Theory 53 (December2025), 36-46. https://doi.org/10.53570/jnt.1778125.
JAMA Gür ZB, Halıcı S. Some Properties of the $q$-Vietoris Number Sequence. JNT. 2025;:36–46.
MLA Gür, Zehra Betül and Serpil Halıcı. “Some Properties of the $q$-Vietoris Number Sequence”. Journal of New Theory, no. 53, 2025, pp. 36-46, doi:10.53570/jnt.1778125.
Vancouver Gür ZB, Halıcı S. Some Properties of the $q$-Vietoris Number Sequence. JNT. 2025(53):36-4.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).