Research Article
BibTex RIS Cite

De Moivre and Euler Formulas for Hyper-Dual Numbers

Year 2025, Issue: 53, 47 - 53, 31.12.2025
https://doi.org/10.53570/jnt.1791828

Abstract

The purpose of this study is to extend classical De Moivre and Euler formulas to the algebra of hyper-dual numbers and to investigate their implications for powers and roots. Hyper-dual numbers form a commutative ring with nilpotent elements that enable exact propagation of first- and second-order differentials. In addition to the fundamental operations, including conjugation, inversion, and Taylor expansion, it presents that every nonzero hyper-dual number admits a multiplicative normal form of the type $a(1+\theta_{1}\varepsilon)(1+\widehat{\theta}\,\varepsilon^{\ast})$. Based on this representation, Euler- and logarithm-type identities are derived, together with a general power formula valid for all integers. Using this framework, the existence and structure of $n$th roots are characterized: when the scalar part is positive and $n$ is even, two distinct roots occur; when $n$ is odd, a unique root exists; and when the scalar part vanishes, nilpotent root families appear in the quadratic case. Illustrative examples are provided to demonstrate the computation of roots and to verify consistency with the hyper-dual Taylor calculus. The findings extend known quaternionic and split-quaternionic results to the hyper-dual setting, contributing tools that combine symbolic manipulation of powers and roots with exact first- and second-order derivative propagation. These tools have potential applications in geometry, kinematics, and automatic differentiation.

References

  • I. Niven, The roots of a quaternion, American Mathematical Monthly 49 (6) (1942) 386--388.
  • M. Özdemir, The roots of a split quaternion, Applied Mathematics Letters 22 (2) (2009) 258--263.
  • M. Özdemir, Finding n-th roots of a $2 \times 2$ real matrix using De Moivre’s formula, Advances in Applied Clifford Algebras 29 (1) (2019) 2.
  • Ö. Bektaş, S. Yüce, De Moivre’s and Euler’s formulas for the matrices of octonions, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89 (1) (2019) 113–127.
  • M. Özdemir, A. A. Ergin, Rotations with unit timelike quaternions in Minkowski 3-space, Journal of Geometry and Physics 56 (2) (2006) 322--336.
  • İ. Öztürk, M. Özdemir, On geometric interpretations of split quaternions, Mathematical Methods in the Applied Sciences 46 (1) (2022) 408--422.
  • E. Cho, Euler's formula and De Moivre's formula for quaternions, Missouri Journal of Mathematical Sciences 11 (2) (1999) 80--83.
  • J. Fike, J. Alonso, The development of hyper-dual numbers for exact second-derivative calculations, 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2011.
  • J. Fike, S. Jongsma, J. Alonso, E. van der Weide, Optimization with gradient and hessian information calculated using hyper-dual numbers, 29th AIAA Applied Aerodynamics Conference, Honolulu, 2011.
  • J. A. Fike, Multi-objective optimization using hyper-dual numbers, Doctoral Dissertation Stanford University (2013) Stanford.
  • A. Cohen, M. Shoham, Application of hyper-dual numbers to rigid bodies equations of motion, Mechanism and Machine Theory 111 (2017) 76--84.
  • A. Cohen, M. Shoham, Application of hyper-dual numbers to multibody kinematics, Journal of Mechanisms and Robotics 8 (1) (2016) 011015.
  • A. Cohen, M. Shoham, Principle of transference -- An extension to hyper-dual numbers, Mechanism and Machine Theory 125 (2018) 101--110.
  • S. Aslan, Kinematic applications of hyper-dual numbers, International Electronic Journal of Geometry 14 (2) (2021) 292--304.
  • Ö. Bektaş, H. Çakır, Hyper dual number matrices, Maejo International Journal of Science and Technology 17 (3) (2023) 187--200.
  • P. Rehner, G. Bauer, Application of generalized (hyper-) dual numbers in equation of state modeling, Frontiers in Chemical Engineering 3 (2021) 758090.
There are 16 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

İskender Öztürk 0000-0001-5674-8219

Hasan Çakır 0000-0003-4317-7968

Mustafa Özdemir 0000-0002-1359-4181

Submission Date September 26, 2025
Acceptance Date November 20, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Issue: 53

Cite

APA Öztürk, İ., Çakır, H., & Özdemir, M. (2025). De Moivre and Euler Formulas for Hyper-Dual Numbers. Journal of New Theory(53), 47-53. https://doi.org/10.53570/jnt.1791828
AMA Öztürk İ, Çakır H, Özdemir M. De Moivre and Euler Formulas for Hyper-Dual Numbers. JNT. December 2025;(53):47-53. doi:10.53570/jnt.1791828
Chicago Öztürk, İskender, Hasan Çakır, and Mustafa Özdemir. “De Moivre and Euler Formulas for Hyper-Dual Numbers”. Journal of New Theory, no. 53 (December 2025): 47-53. https://doi.org/10.53570/jnt.1791828.
EndNote Öztürk İ, Çakır H, Özdemir M (December 1, 2025) De Moivre and Euler Formulas for Hyper-Dual Numbers. Journal of New Theory 53 47–53.
IEEE İ. Öztürk, H. Çakır, and M. Özdemir, “De Moivre and Euler Formulas for Hyper-Dual Numbers”, JNT, no. 53, pp. 47–53, December2025, doi: 10.53570/jnt.1791828.
ISNAD Öztürk, İskender et al. “De Moivre and Euler Formulas for Hyper-Dual Numbers”. Journal of New Theory 53 (December2025), 47-53. https://doi.org/10.53570/jnt.1791828.
JAMA Öztürk İ, Çakır H, Özdemir M. De Moivre and Euler Formulas for Hyper-Dual Numbers. JNT. 2025;:47–53.
MLA Öztürk, İskender et al. “De Moivre and Euler Formulas for Hyper-Dual Numbers”. Journal of New Theory, no. 53, 2025, pp. 47-53, doi:10.53570/jnt.1791828.
Vancouver Öztürk İ, Çakır H, Özdemir M. De Moivre and Euler Formulas for Hyper-Dual Numbers. JNT. 2025(53):47-53.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).