Research Article
BibTex RIS Cite

Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions

Year 2025, Issue: 53, 96 - 111, 31.12.2025

Abstract

We study the Lax spectrum of kink-breather solutions on cnoidal backgrounds for the integrable sine-Gordon equation. Linearizing around a kink-breather configuration on a periodic (cnoidal) carrier leads to a Schrödinger-type spectral problem with an elliptic potential given by the cosine of the background field. Using a Jacobi-elliptic change of variables adapted to the cnoidal structure, we reduce this second-order equation to a Heun-type differential equation. Two linearly independent Heun solutions are then used to build a Wronskian determinant whose zeros describe the Floquet-Bloch band-gap structure of the Lax spectrum. We discuss how the spectral bands and isolated eigenvalues (internal modes) depend on the physical and background parameters, and we relate limiting regimes such as the pure cnoidal background and the solitary kink limit to classical Lame- and Pöschl-Teller-type spectral problems.

References

  • V. G. Ivancevic, T. T. Ivancevic, Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures, Journal of Geometry and Symmetry in Physics 31 (2013) 1--56.
  • M. Nishida, Y. Furukawa, T. Fujii, N. Hatakenaka, Breather-breather interactions in sine-Gordon systems using collective coordinate approach, Physical Review E 80 (2009) 036603.
  • T. Bountis, J. Cantisan, J. Cuevas-Maraver, J. E. Macias-Diaz, P. G. Kevrekidis, On the fractional dynamics of kinks in sine-Gordon models, Mathematics 13 (2) (2025) 220.
  • M. A. Alejo, C. Munoz, J. M. Palacios, On the variational structure of breather solutions I: Sine-Gordon equation, Journal of Mathematical Analysis and Applications 453 (2) (2017) 1111--1138.
  • C. Munoz, J. M. Palacios, Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space, Annales de l'Institut Henri Poincare C, Analyse Non Lineaire 36 (4) (2019) 977--1034.
  • M. G. Forest, D. W. McLaughlin, Spectral theory for the periodic sine-Gordon equation: A concrete viewpoint, Journal of Mathematical Physics 23 (7) (1982) 1248--1277.
  • M. G. Forest, D. W. McLaughlin, Modulations of sinh-Gordon and sine-Gordon wavetrains, Studies in Applied Mathematics 68 (1) (1983) 11--59.
  • N. Ercolani, M. G. Forest, D. W. McLaughlin, Modulational stability of two-phase sine-Gordon wavetrains, Studies in Applied Mathematics 71 (2) (1984) 97--101.
  • N. M. Ercolani, M. G. Forest, The geometry of real sine-Gordon wavetrains, Communications in Mathematical Physics 99 (1985) 1--49.
  • C. K. R. T. Jones, R. Marangell, P. D. Miller, R. G. Plaza, On the stability analysis of periodic sine-Gordon traveling waves, Physica D: Nonlinear Phenomena 251 (2013) 63--74.
  • C. K. R. T. Jones, R. Marangell, P. D. Miller, R. G. Plaza, On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations, Bulletin of the Brazilian Mathematical Society, New Series 47 (2016) 417--429.
  • A. E. Bernardini, R. da Rocha, Perturbatively deformed defects in Pöschl-Teller-driven scenarios for quantum mechanics, Physics Letters A 380 (29-30) (2016) 2279--2287.
  • A. A. Izquierdo, W. G. Fuertes, J. M. Guilarte, Self-gravitating kinks in two-dimensional pseudo-Riemannian universes, Physical Review D 101 (2020) 036020.
  • W. He, A new treatment for some periodic Schrödinger operators I: The eigenvalue, Communications in Theoretical Physics 69 (2) (2018) 115--126.
  • W. He, Spectra of elliptic potentials and supersymmetric gauge theories, Journal of High Energy Physics 2020 (2020) 70.
  • W. He, P. Su, Properties of some elliptic Hill's potentials, Analysis and Mathematical Physics 14 (2024) 40.
  • G. Biondini, X.-D. Luo, J. Oregero, A. Tovbis, Elliptic finite-band potentials of a non-self-adjoint Dirac operator, Advances in Mathematics 429 (2023) 109188.
  • A. Ronveaux, Heun's differential equations, Oxford University Press, 1995.
  • M. Piatek, A. R. Pietrykowski, Solving Heun's equation using conformal blocks, Nuclear Physics B 938 (2019) 543--570.
There are 19 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Dynamical Systems in Applications, Applied Mathematics (Other)
Journal Section Research Article
Authors

Volkan Ala 0000-0002-8499-9979

Submission Date November 30, 2025
Acceptance Date December 30, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Issue: 53

Cite

APA Ala, V. (2025). Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions. Journal of New Theory(53), 96-111.
AMA Ala V. Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions. JNT. December 2025;(53):96-111.
Chicago Ala, Volkan. “Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions”. Journal of New Theory, no. 53 (December 2025): 96-111.
EndNote Ala V (December 1, 2025) Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions. Journal of New Theory 53 96–111.
IEEE V. Ala, “Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions”, JNT, no. 53, pp. 96–111, December2025.
ISNAD Ala, Volkan. “Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions”. Journal of New Theory 53 (December2025), 96-111.
JAMA Ala V. Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions. JNT. 2025;:96–111.
MLA Ala, Volkan. “Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions”. Journal of New Theory, no. 53, 2025, pp. 96-111.
Vancouver Ala V. Heun-Wronskian Analysis of the Lax Spectrum for Sine-Gordon Kink-Breather Solutions. JNT. 2025(53):96-111.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).