Research Article
BibTex RIS Cite

On (m,n)-bi-ideals in LA-semigroups

Year 2018, Issue: 25, 65 - 71, 06.10.2018

Abstract

In this paper we study define of an (m,n)-bi-ideals in LA-semigroup and study basic properties of it.

References

  • [1] C. Jirojkul, R. Sripakorn and R. Chinran Minimal Quasi-Ideals in ¡-Semigroups Quasi-idels of semigroup, International Mathematical Forum.4 (2009) 7-11.
  • [2] M. A. Ansari and M. R. Khan 2011, Note on (m; n) bi-¡-ideals in ¡-semigroups, Rend.Circ. Mat. Palermo 60 (2011) 31-42.
  • [3] M. Akram, N. Yaqood and M. Khan On (m; n)-ideals in LA-semigroups, Applied Mathematical Science 7 (2013) 2187-2191.
  • [4] M. Khan, Faisal, and V. Amjid Ideals in intra-regular left almost semigroups, arXiv:1012.5598v1 [math.GR] (2010) pp. 1-10.
  • [5] M. Khan, Faisal, and V. Amjid On some classes of Abel-Grassmann's groupoids arXiv:1010.5965v2 [math.GR] (2010) 1-6.
  • [6] M. Sarwar (Kamran) Conditions for LA-semigroup to resemble associative structures, PhD thesis. Quaid-i-Azam University, 1933.
  • [7] M. Shabir and S. Naz Pure spetrum of an AG-groupoid with left identity and zero, World Applied Sciences Journal 17 (2012) 1759-1768.
  • [8] Q. Mushtaq and M. Khan 2009 M-System in LA-semigroups, Southeast Asian Bulletin of Mathematics 33 (2009) 321-327.
  • [9] T. Gaketem On (m; n)-quasi-ideals in LA-semigroups, Applied Science 7 (2015) 57-61.
  • [10] W. Khan, F. Yousafzai and M. Khan On generalized ideals of left almost semi-groups, European Journal of Pure and Applied Mathematics 9 (2016) 277-291.
Year 2018, Issue: 25, 65 - 71, 06.10.2018

Abstract

References

  • [1] C. Jirojkul, R. Sripakorn and R. Chinran Minimal Quasi-Ideals in ¡-Semigroups Quasi-idels of semigroup, International Mathematical Forum.4 (2009) 7-11.
  • [2] M. A. Ansari and M. R. Khan 2011, Note on (m; n) bi-¡-ideals in ¡-semigroups, Rend.Circ. Mat. Palermo 60 (2011) 31-42.
  • [3] M. Akram, N. Yaqood and M. Khan On (m; n)-ideals in LA-semigroups, Applied Mathematical Science 7 (2013) 2187-2191.
  • [4] M. Khan, Faisal, and V. Amjid Ideals in intra-regular left almost semigroups, arXiv:1012.5598v1 [math.GR] (2010) pp. 1-10.
  • [5] M. Khan, Faisal, and V. Amjid On some classes of Abel-Grassmann's groupoids arXiv:1010.5965v2 [math.GR] (2010) 1-6.
  • [6] M. Sarwar (Kamran) Conditions for LA-semigroup to resemble associative structures, PhD thesis. Quaid-i-Azam University, 1933.
  • [7] M. Shabir and S. Naz Pure spetrum of an AG-groupoid with left identity and zero, World Applied Sciences Journal 17 (2012) 1759-1768.
  • [8] Q. Mushtaq and M. Khan 2009 M-System in LA-semigroups, Southeast Asian Bulletin of Mathematics 33 (2009) 321-327.
  • [9] T. Gaketem On (m; n)-quasi-ideals in LA-semigroups, Applied Science 7 (2015) 57-61.
  • [10] W. Khan, F. Yousafzai and M. Khan On generalized ideals of left almost semi-groups, European Journal of Pure and Applied Mathematics 9 (2016) 277-291.
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Thiti Gaketem

Publication Date October 6, 2018
Submission Date June 6, 2018
Published in Issue Year 2018 Issue: 25

Cite

APA Gaketem, T. (2018). On (m,n)-bi-ideals in LA-semigroups. Journal of New Theory(25), 65-71.
AMA Gaketem T. On (m,n)-bi-ideals in LA-semigroups. JNT. October 2018;(25):65-71.
Chicago Gaketem, Thiti. “On (m,n)-Bi-Ideals in LA-Semigroups”. Journal of New Theory, no. 25 (October 2018): 65-71.
EndNote Gaketem T (October 1, 2018) On (m,n)-bi-ideals in LA-semigroups. Journal of New Theory 25 65–71.
IEEE T. Gaketem, “On (m,n)-bi-ideals in LA-semigroups”, JNT, no. 25, pp. 65–71, October 2018.
ISNAD Gaketem, Thiti. “On (m,n)-Bi-Ideals in LA-Semigroups”. Journal of New Theory 25 (October 2018), 65-71.
JAMA Gaketem T. On (m,n)-bi-ideals in LA-semigroups. JNT. 2018;:65–71.
MLA Gaketem, Thiti. “On (m,n)-Bi-Ideals in LA-Semigroups”. Journal of New Theory, no. 25, 2018, pp. 65-71.
Vancouver Gaketem T. On (m,n)-bi-ideals in LA-semigroups. JNT. 2018(25):65-71.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).