Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Sayı: 33, 15 - 25, 31.12.2020

Öz

Kaynakça

  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
  • C. Chang, Fuzzy Topological Spaces, Journal of Mathematical analysis and Applications 24 (1968) 182-190.
  • R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, Journal of Mathematical analysis and Applications 56(3) (1976) 621-633.
  • R. Lowen, Initial and Final Fuzzy Topologies and The Fuzzy Tycho no Theorem, Journal of Mathematical analysis and Applications 58(1) (1977) 11-21.
  • K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
  • D. Coker, An introduction of intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997) 81-89.
  • I. M. Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czechoslovak Mathematical Journal 53(4) (2003) 793-803.
  • K. Hur, J. H., Kim, J. H., Ryou, Intuitionistic Fuzzy Topological Spaces, The Pure and Applied Mathematics 11(3) (2004) 243-265.
  • R. Saadati and J. H., Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos, Solitons and Fractals 27(2) (2006) 331-344.
  • R. R. Yager, Pythagorean Fuzzy Subsets, Proceeding Joint IFSA World Congress NAFIPS Annual Meeting, 1, Edmonton, Canada, (2013) 57-61.
  • R. R. Yager, A. M., Abbasov, Pythagorean Membership Grades, Complex Numbers, and Decision Making, International Journal of Intelligent Systems 28(5) (2014) 436-452.
  • P. Ren, Z. Xu, X. Gou, Pythagorean Fuzzy TODIM Approach to Multi-criteria Decision Making, Applied Soft Computing, 42 (2016) 246-259.
  • S. Zeng, J. Chen, X. Li, A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making, International Journal of Information Technology and Decision Making 15(2) (2016) 403-422.
  • X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decisions making with Pythagorean fuzzy sets, International Journal of Intelligent Systems 29(12) (2014) 1061-1078.
  • H. Garg, New Logarithmic Operational Laws and Their Aggregation Operators for Pythagorean Fuzzy Set and Their Applications, International Journal of Intelligent Systems 34(1) (2019) 82-106.
  • H. Garg, A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making. International Journal of Intelligent Systems 31(9) (2016) 886-920.
  • W. Liang, X. Zhang, M. Liu, The Maximizing Deviation Method Based on Interval-valued Pythagorean Fuzzy Weighted Aggregating Operator for Multiple Criteria Group Decision Analysis. Discrete Dynamics in Nature and Society, (2015) Article ID 746572.
  • Z. Ma, Z. Xu, Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in multicriteria decision-making problems, International Journal of Intelligent Systems 31(12) (2016) 1198-1219.
  • H. Garg, A Novel Correlation Coefficients Between Pythagorean Fuzzy Sets and Its Applications to Decision-making Processes, International Journal of Intelligent Systems 31(12) (2016) 1234-1252.
  • X. Zhang, A Novel Approach Based on Similarity Measure for Pythagorean Fuzzy Multiple Criteria Group Decision Making. International Journal of Intelligent Systems 31(6) (2016) 593-611.
  • Y. Hou, F. Zafar, W. Yu, Q, Zhai Y., A Novel Method for Multi-attribute Decision Making with Interval-valued Pythagorean Fuzzy Linguistic Information, International Journal of Intelligent Systems 32(10) (2017) 1085-1112.
  • Z. Liu, P. Liu, W. Liu, J. Pang, Pythagorean Uncertain Linguistic Partitioned Bonferroni Mean Operators and Their Application in Multi-attribute Decision Making. Journal of Intelligent and Fuzzy Systems 32(3) (2017) 2779-2790.
  • X. Peng, New Operations for Interval-valued Pythagorean Fuzzy Set, Scientia Iranica E, 26(2) (2019), 1049-1076.
  • X. Peng, G., Selvachandran, Pythagorean Fuzzy Set: State of the Art and Future Directions, Artificial Intelligence Review 52 (2019) 1873-1927.
  • X. Gou, Z. Xu, P. Ren, The Properties of Continuous Pythagorean Fuzzy Information, International Journal of Intelligent Systems 31(5) (2016) 401-424.
  • X. Peng, Y. Yang, Some Results for Pythagorean Fuzzy Sets, International Journal of Intelligent Systems 30(11) (2015) 1133-1160.
  • M. Olgun, M. Unver, Ş. Yardımcı, Pythagorean Fuzzy Topological Spaces, Complex and Intelligent Systems 5(2) (2019) 177-183.
  • K. Naeem, M. Riaz, X. D. Peng, D. Afzal, Pythagorean m-polar Fuzzy Topology with TOPSIS Approach in Exploring Most Effectual Method for Curing from COVID-19, International Journal of Biomathematics (2020) DOI: 10.1142/S1793524520500758.

Some Structures on Pythagorean Fuzzy Topological Spaces

Yıl 2020, Sayı: 33, 15 - 25, 31.12.2020

Öz

In this paper, we introduced some operations such as Pythagorean fuzzy interior, Pythagorean fuzzy closure, Pythagorean fuzzy boundary, Pythagorean fuzzy basic on Pythagorean fuzzy topological spaces. Also, the notions of Pythagorean fuzzy open (closed) functions and Pythagorean fuzzy homeomorphism are introduced, and their basic properties are investigated.

, , , , , .

Kaynakça

  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
  • C. Chang, Fuzzy Topological Spaces, Journal of Mathematical analysis and Applications 24 (1968) 182-190.
  • R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, Journal of Mathematical analysis and Applications 56(3) (1976) 621-633.
  • R. Lowen, Initial and Final Fuzzy Topologies and The Fuzzy Tycho no Theorem, Journal of Mathematical analysis and Applications 58(1) (1977) 11-21.
  • K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
  • D. Coker, An introduction of intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997) 81-89.
  • I. M. Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czechoslovak Mathematical Journal 53(4) (2003) 793-803.
  • K. Hur, J. H., Kim, J. H., Ryou, Intuitionistic Fuzzy Topological Spaces, The Pure and Applied Mathematics 11(3) (2004) 243-265.
  • R. Saadati and J. H., Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos, Solitons and Fractals 27(2) (2006) 331-344.
  • R. R. Yager, Pythagorean Fuzzy Subsets, Proceeding Joint IFSA World Congress NAFIPS Annual Meeting, 1, Edmonton, Canada, (2013) 57-61.
  • R. R. Yager, A. M., Abbasov, Pythagorean Membership Grades, Complex Numbers, and Decision Making, International Journal of Intelligent Systems 28(5) (2014) 436-452.
  • P. Ren, Z. Xu, X. Gou, Pythagorean Fuzzy TODIM Approach to Multi-criteria Decision Making, Applied Soft Computing, 42 (2016) 246-259.
  • S. Zeng, J. Chen, X. Li, A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making, International Journal of Information Technology and Decision Making 15(2) (2016) 403-422.
  • X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decisions making with Pythagorean fuzzy sets, International Journal of Intelligent Systems 29(12) (2014) 1061-1078.
  • H. Garg, New Logarithmic Operational Laws and Their Aggregation Operators for Pythagorean Fuzzy Set and Their Applications, International Journal of Intelligent Systems 34(1) (2019) 82-106.
  • H. Garg, A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making. International Journal of Intelligent Systems 31(9) (2016) 886-920.
  • W. Liang, X. Zhang, M. Liu, The Maximizing Deviation Method Based on Interval-valued Pythagorean Fuzzy Weighted Aggregating Operator for Multiple Criteria Group Decision Analysis. Discrete Dynamics in Nature and Society, (2015) Article ID 746572.
  • Z. Ma, Z. Xu, Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in multicriteria decision-making problems, International Journal of Intelligent Systems 31(12) (2016) 1198-1219.
  • H. Garg, A Novel Correlation Coefficients Between Pythagorean Fuzzy Sets and Its Applications to Decision-making Processes, International Journal of Intelligent Systems 31(12) (2016) 1234-1252.
  • X. Zhang, A Novel Approach Based on Similarity Measure for Pythagorean Fuzzy Multiple Criteria Group Decision Making. International Journal of Intelligent Systems 31(6) (2016) 593-611.
  • Y. Hou, F. Zafar, W. Yu, Q, Zhai Y., A Novel Method for Multi-attribute Decision Making with Interval-valued Pythagorean Fuzzy Linguistic Information, International Journal of Intelligent Systems 32(10) (2017) 1085-1112.
  • Z. Liu, P. Liu, W. Liu, J. Pang, Pythagorean Uncertain Linguistic Partitioned Bonferroni Mean Operators and Their Application in Multi-attribute Decision Making. Journal of Intelligent and Fuzzy Systems 32(3) (2017) 2779-2790.
  • X. Peng, New Operations for Interval-valued Pythagorean Fuzzy Set, Scientia Iranica E, 26(2) (2019), 1049-1076.
  • X. Peng, G., Selvachandran, Pythagorean Fuzzy Set: State of the Art and Future Directions, Artificial Intelligence Review 52 (2019) 1873-1927.
  • X. Gou, Z. Xu, P. Ren, The Properties of Continuous Pythagorean Fuzzy Information, International Journal of Intelligent Systems 31(5) (2016) 401-424.
  • X. Peng, Y. Yang, Some Results for Pythagorean Fuzzy Sets, International Journal of Intelligent Systems 30(11) (2015) 1133-1160.
  • M. Olgun, M. Unver, Ş. Yardımcı, Pythagorean Fuzzy Topological Spaces, Complex and Intelligent Systems 5(2) (2019) 177-183.
  • K. Naeem, M. Riaz, X. D. Peng, D. Afzal, Pythagorean m-polar Fuzzy Topology with TOPSIS Approach in Exploring Most Effectual Method for Curing from COVID-19, International Journal of Biomathematics (2020) DOI: 10.1142/S1793524520500758.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Taha Öztürk 0000-0003-2402-6507

Adem Yolcu 0000-0002-4317-652X

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 16 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 33

Kaynak Göster

APA Öztürk, T., & Yolcu, A. (2020). Some Structures on Pythagorean Fuzzy Topological Spaces. Journal of New Theory(33), 15-25.
AMA Öztürk T, Yolcu A. Some Structures on Pythagorean Fuzzy Topological Spaces. JNT. Aralık 2020;(33):15-25.
Chicago Öztürk, Taha, ve Adem Yolcu. “Some Structures on Pythagorean Fuzzy Topological Spaces”. Journal of New Theory, sy. 33 (Aralık 2020): 15-25.
EndNote Öztürk T, Yolcu A (01 Aralık 2020) Some Structures on Pythagorean Fuzzy Topological Spaces. Journal of New Theory 33 15–25.
IEEE T. Öztürk ve A. Yolcu, “Some Structures on Pythagorean Fuzzy Topological Spaces”, JNT, sy. 33, ss. 15–25, Aralık 2020.
ISNAD Öztürk, Taha - Yolcu, Adem. “Some Structures on Pythagorean Fuzzy Topological Spaces”. Journal of New Theory 33 (Aralık 2020), 15-25.
JAMA Öztürk T, Yolcu A. Some Structures on Pythagorean Fuzzy Topological Spaces. JNT. 2020;:15–25.
MLA Öztürk, Taha ve Adem Yolcu. “Some Structures on Pythagorean Fuzzy Topological Spaces”. Journal of New Theory, sy. 33, 2020, ss. 15-25.
Vancouver Öztürk T, Yolcu A. Some Structures on Pythagorean Fuzzy Topological Spaces. JNT. 2020(33):15-2.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).