Research Article
BibTex RIS Cite
Year 2021, Issue: 37, 99 - 107, 31.12.2021
https://doi.org/10.53570/jnt.1036307

Abstract

References

  • K. H. Chang, Product Design Modeling Using CAD/CAE, The Computer Aided Engineering Design Series, Academic Press, 2014.
  • R. Goldman, An Integrated Introduction to Computer Graphics and Geometric Modeling, CRC Press, 2009.
  • S. Guha, Computer Graphics through OpenGL: From Theory to Experiments, Chapman and Hall/CRC, 2018.
  • H. Pottmann, A. Asperl, M. Hofer, A. Kilian, Architectural Geometry, Bentley Institute Press, Exton, 2007.
  • M. Tamura, Surfaces Which Contain Helical Geodesics, Geometriae Dedicata 42(3) (1992) 311 -315.
  • A. Görgülü, Surfaces Which Contain Inclined Curves as Geodesics, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 42 (1993) 39 -44.
  • M. Tamura, Surfaces Which Contain Helical Geodesics in the 3-Sphere, Memoirs of the Faculty of Science and Engineering Shimane University. Series B. Mathematical Science 37 (2004) 59 -65.
  • D. W. Yoon, On Constructions of Minimal Surfaces, Journal of the Chungcheong Mathematical Society 34(1) (2021) 1 -15.
  • I. Hotz, H. Hagen, Visualizing Geodesics, In Proceedings Visualization VIS 2000 (Cat. No. 00CH37145) IEEE (2000) 311 -318.
  • G. R. Kumar, P. Srinivasan, V. D. Holla, K. G. Shastry, B. G. Prakash, Geodesic Curve Computations on Surfaces, Computer Aided Geometric Design 20(2) (2003) 119 -133.
  • E. Kasap, M. Yapıcı, F. T. Akyıldız, A Numerical Study for Computation of Geodesic Curves, Applied Mathematics and Computation 171(2) (2005) 1206 -1213.
  • D. J. Struik, Lectures on Classical Differential Geometry, 2nd Edition, Dover Publications Inc., New York, 1988.
  • A. T. Ali, New Special Curves and Their Spherical Indicatrix, Global Journal of Advanced Research on Classical and Modern Geometries 1(2) (2012) 28 -38.
  • R. Lopez, G. Ruiz-Hern'andez, A Characterization of Isoparametric Surfaces in R^3 via Normal Surfaces, Results in Mathematics 67(1) (2015) 87 -94.
  • M. Huard, N. Sprynski, N. Szafran, L. Biard, Reconstruction of Quasi Developable Surfaces from Ribbon Curves, Numerical Algorithms 63(3) (2013) 483 -506.
  • S. Izumiya, S. Otani, Flat Approximations of Surfaces Along Curves, Demonstratio Mathematica 48(2) (2015) 217 -241.
  • S. I. Honda, S. Izumiya M. Takahashi, Developable Surfaces Along Frontal Curves on Embedded Surfaces, Journal of Geometry 110(2) (2019) 1 -20.
  • S. Hananoi, N. Ito, S. Izumiya, Spherical Darboux Images of Curves on Surfaces, Beitr’age zur Algebra und Geometrie 56(2) (2015) 575 -585.
  • S. Izumiya, K. Saji, N. Takeuchi, Flat Surfaces Along Cuspidal Edges, Journal of Singularities 16 (2017) 73 -100.
  • G. J. Wang, K. Tang, C.L. Tai, Parametric Representation of a Surface Pencil with a Common Spatial Geodesic, Computer-Aided Design 36(5) (2004) 447 -459.
  • E. Kasap, F.T. Akyıldız, K. Orbay, A generalization of surfaces family with common spatial geodesic, Applied Mathematics and Computation 201(1-2) (2008) 781 -789.
  • R. A. Al-Ghefaria, A. B. Rashad, An Approach for Designing a Developable Surface with a Common Geodesic Curve, International Journal of Contemporary Mathematical Sciences 8(18) (2013) 875 -891.
  • N. M. Althibany, Classification of Ruled Surfaces Family with Common Characteristic Curve in Euclidean 3-space, Turkish Journal of Science 6(2) (2021) 61 -70.
  • N. M. Althibany, Construction of Developable Surface with Geodesic or Line of Curvature Coordinates, Journal of New Theory (36) (2021) 75 -87.
  • M. D. Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
  • A. N. Pressley, Elementary Differential Geometry, Springer Science & Business Media, 2010.
  • M. Düldül, B. U. Düldül, Characterizations of helices by using their Darboux Vectors, Sigma: Journal of Engineering & Natural Sciences 38(3) (2020) 1299 -1306.
  • M. Raffaelli, J. Bohr, S. Markvorsen, Cartan Ribbonization and a Topological Inspection, Proceedings of the Royal Society A 474(2220) (2018) p.20170389.
  • I. Markina, M. Raffaelli, Flat Approximations of Hypersurfaces Along Curves, Manuscripta Mathematica 160(3) (2019) 315 -325.

Generating Generalized Cylinder with Geodesic Base Curve According to Darboux Frame

Year 2021, Issue: 37, 99 - 107, 31.12.2021
https://doi.org/10.53570/jnt.1036307

Abstract

This paper aims to design a generalized cylinder with a geodesic base curve according to the Darboux frame in Euclidean 3-space. A generalized cylinder is a special ruled surface that is constructed by a continuous fixed motion of a generator line called the ruling along a given curve called the base curve. The necessary and sufficient conditions for the base curve to be geodesic are studied. The main results show that the generalized cylinder with a geodesic base curve is an osculating cylinder whose base curve is a helical geodesic, and the rulings are directed by the unit osculating Darboux vector.

References

  • K. H. Chang, Product Design Modeling Using CAD/CAE, The Computer Aided Engineering Design Series, Academic Press, 2014.
  • R. Goldman, An Integrated Introduction to Computer Graphics and Geometric Modeling, CRC Press, 2009.
  • S. Guha, Computer Graphics through OpenGL: From Theory to Experiments, Chapman and Hall/CRC, 2018.
  • H. Pottmann, A. Asperl, M. Hofer, A. Kilian, Architectural Geometry, Bentley Institute Press, Exton, 2007.
  • M. Tamura, Surfaces Which Contain Helical Geodesics, Geometriae Dedicata 42(3) (1992) 311 -315.
  • A. Görgülü, Surfaces Which Contain Inclined Curves as Geodesics, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 42 (1993) 39 -44.
  • M. Tamura, Surfaces Which Contain Helical Geodesics in the 3-Sphere, Memoirs of the Faculty of Science and Engineering Shimane University. Series B. Mathematical Science 37 (2004) 59 -65.
  • D. W. Yoon, On Constructions of Minimal Surfaces, Journal of the Chungcheong Mathematical Society 34(1) (2021) 1 -15.
  • I. Hotz, H. Hagen, Visualizing Geodesics, In Proceedings Visualization VIS 2000 (Cat. No. 00CH37145) IEEE (2000) 311 -318.
  • G. R. Kumar, P. Srinivasan, V. D. Holla, K. G. Shastry, B. G. Prakash, Geodesic Curve Computations on Surfaces, Computer Aided Geometric Design 20(2) (2003) 119 -133.
  • E. Kasap, M. Yapıcı, F. T. Akyıldız, A Numerical Study for Computation of Geodesic Curves, Applied Mathematics and Computation 171(2) (2005) 1206 -1213.
  • D. J. Struik, Lectures on Classical Differential Geometry, 2nd Edition, Dover Publications Inc., New York, 1988.
  • A. T. Ali, New Special Curves and Their Spherical Indicatrix, Global Journal of Advanced Research on Classical and Modern Geometries 1(2) (2012) 28 -38.
  • R. Lopez, G. Ruiz-Hern'andez, A Characterization of Isoparametric Surfaces in R^3 via Normal Surfaces, Results in Mathematics 67(1) (2015) 87 -94.
  • M. Huard, N. Sprynski, N. Szafran, L. Biard, Reconstruction of Quasi Developable Surfaces from Ribbon Curves, Numerical Algorithms 63(3) (2013) 483 -506.
  • S. Izumiya, S. Otani, Flat Approximations of Surfaces Along Curves, Demonstratio Mathematica 48(2) (2015) 217 -241.
  • S. I. Honda, S. Izumiya M. Takahashi, Developable Surfaces Along Frontal Curves on Embedded Surfaces, Journal of Geometry 110(2) (2019) 1 -20.
  • S. Hananoi, N. Ito, S. Izumiya, Spherical Darboux Images of Curves on Surfaces, Beitr’age zur Algebra und Geometrie 56(2) (2015) 575 -585.
  • S. Izumiya, K. Saji, N. Takeuchi, Flat Surfaces Along Cuspidal Edges, Journal of Singularities 16 (2017) 73 -100.
  • G. J. Wang, K. Tang, C.L. Tai, Parametric Representation of a Surface Pencil with a Common Spatial Geodesic, Computer-Aided Design 36(5) (2004) 447 -459.
  • E. Kasap, F.T. Akyıldız, K. Orbay, A generalization of surfaces family with common spatial geodesic, Applied Mathematics and Computation 201(1-2) (2008) 781 -789.
  • R. A. Al-Ghefaria, A. B. Rashad, An Approach for Designing a Developable Surface with a Common Geodesic Curve, International Journal of Contemporary Mathematical Sciences 8(18) (2013) 875 -891.
  • N. M. Althibany, Classification of Ruled Surfaces Family with Common Characteristic Curve in Euclidean 3-space, Turkish Journal of Science 6(2) (2021) 61 -70.
  • N. M. Althibany, Construction of Developable Surface with Geodesic or Line of Curvature Coordinates, Journal of New Theory (36) (2021) 75 -87.
  • M. D. Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
  • A. N. Pressley, Elementary Differential Geometry, Springer Science & Business Media, 2010.
  • M. Düldül, B. U. Düldül, Characterizations of helices by using their Darboux Vectors, Sigma: Journal of Engineering & Natural Sciences 38(3) (2020) 1299 -1306.
  • M. Raffaelli, J. Bohr, S. Markvorsen, Cartan Ribbonization and a Topological Inspection, Proceedings of the Royal Society A 474(2220) (2018) p.20170389.
  • I. Markina, M. Raffaelli, Flat Approximations of Hypersurfaces Along Curves, Manuscripta Mathematica 160(3) (2019) 315 -325.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Nabil Althibany 0000-0001-8057-2938

Publication Date December 31, 2021
Submission Date December 14, 2021
Published in Issue Year 2021 Issue: 37

Cite

APA Althibany, N. (2021). Generating Generalized Cylinder with Geodesic Base Curve According to Darboux Frame. Journal of New Theory(37), 99-107. https://doi.org/10.53570/jnt.1036307
AMA Althibany N. Generating Generalized Cylinder with Geodesic Base Curve According to Darboux Frame. JNT. December 2021;(37):99-107. doi:10.53570/jnt.1036307
Chicago Althibany, Nabil. “Generating Generalized Cylinder With Geodesic Base Curve According to Darboux Frame”. Journal of New Theory, no. 37 (December 2021): 99-107. https://doi.org/10.53570/jnt.1036307.
EndNote Althibany N (December 1, 2021) Generating Generalized Cylinder with Geodesic Base Curve According to Darboux Frame. Journal of New Theory 37 99–107.
IEEE N. Althibany, “Generating Generalized Cylinder with Geodesic Base Curve According to Darboux Frame”, JNT, no. 37, pp. 99–107, December 2021, doi: 10.53570/jnt.1036307.
ISNAD Althibany, Nabil. “Generating Generalized Cylinder With Geodesic Base Curve According to Darboux Frame”. Journal of New Theory 37 (December 2021), 99-107. https://doi.org/10.53570/jnt.1036307.
JAMA Althibany N. Generating Generalized Cylinder with Geodesic Base Curve According to Darboux Frame. JNT. 2021;:99–107.
MLA Althibany, Nabil. “Generating Generalized Cylinder With Geodesic Base Curve According to Darboux Frame”. Journal of New Theory, no. 37, 2021, pp. 99-107, doi:10.53570/jnt.1036307.
Vancouver Althibany N. Generating Generalized Cylinder with Geodesic Base Curve According to Darboux Frame. JNT. 2021(37):99-107.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).