Research Article
BibTex RIS Cite

A New Family of Odd Nakagami Exponential (NE-G) Distributions

Year 2022, Issue: 39, 19 - 41, 30.06.2022
https://doi.org/10.53570/jnt.1112959

Abstract

In this study, a new family of odd nakagami exponential (NE-G) distributions is introduced and investigated as a new generator of continuous distributions. Quantile, hazard rate function, moments, incomplete moments, order statistics, and entropies are only a few of the statistical features that are investigated. A unique model is presented and thoroughly examined. To estimate model parameters based on describing real-life data sets, the maximum likelihood method is applied. The bias and mean square error of maximum likelihood estimators are investigated using a comprehensive simulation exercise. Finally, the new family adaptability is demonstrated via application to real-world data sets.

References

  • N. Eugene, C. Lee, F. Famoye, Beta-Normal Distribution and Its Applications, Communications in Statistics-Theory and Methods 31 (4) (2002) 497–512.
  • M. A. R. De Pascoa, E. M. M. Ortega, G. M. Cordeiro, The Kumaraswamy Generalized Gamma Distribution with Application in Survival Analysis, Statistical methodology 8 (5) (2011) 411–433.
  • G. M. Cordeiro, E. M. M. Ortega, D. C. C. da Cunha, The Exponentiated Generalized Class of Distributions, Journal of Data Science 11 (1) (2013) 1–27.
  • H. Torabi, N. H. Montazeri, The Logistic-Uniform Distribution and Its Applications, Communications in Statistics-Simulation and Computation 43 (10) (2014) 2551–2569.
  • M. M. Ristić, N. Balakrishnan, The Gamma-Exponentiated Exponential Distribution, Journal of Statistical Computation and Simulation 82 (8) (2012) 1191–1206.
  • C. Alexander, G. M. Cordeiro, E. M. M. Ortega, J. M. Sarabia, Generalized Beta-Generated Distributions, Computational Statistics & Data Analysis 56 (6) (2012) 1880–1897.
  • M. Amini, S. M. T. K. MirMostafaee, J. Ahmadi, Log-Gamma-Generated Families of Distributions, Statistics 48 (4) (2014) 913–932.
  • A. S. Hassan, S. E. Hemeda, A New Family of Additive Weibull-Generated Distributions, rn 55 (2016) 7.
  • M. Alizadeh, G. M. Cordeiro, E. De Brito, C. G. B. Dem´etrio, The Beta Marshall-Olkin Family of Distributions, Journal of Statistical Distributions and Applications 2 (1) (2015) 4.
  • B. Hosseini, M. Afshari, M. Alizadeh, The Generalized Odd Gamma-G Family of Distributions: Properties and Applications, Austrian Journal of Statistics 47 (2) (2018) 69–89.
  • H. Torabi, N. M. Hedesh, The Gamma-Uniform Distribution and Its Applications, Kybernetika 48 (1) (2012) 16–30.
  • M. H. Tahir, M. Zubair, M. Mansoor, G. M. Cordeiro, M. Alizadehk, G. G. Hamedani, A New Weibull-G Family of Distributions, Hacettepe Journal of Mathematics and Statistics 45 (2) (2016) 629–647.
  • A. Z. Afify, G. Cordeiro, F. Jamal, M. Elgarhy, M. Nasir, The Marshall-Olkin Odd Burr III-G Family of Distributions: Theory, Estimation and Applications.
  • Z. Azam, A. Ahmad Saeed, J. Riffat, A New Exponentiated Generalized Power Function Distribution, Advances and Applications in Statistics 61 (1) (2020) 33–63.
  • I. Abdullahi, J. Obalowu, The Generalized Odd Nakagami-G Family of Distributions: Properties and Applications, Naturengs 1 (2) (2020) 1–16.
  • M. D. Nichols, W. J. Padgett, A Bootstrap Control Chart for Weibull Percentiles, Quality and reliability engineering international 22 (2) (2006) 141–151.
  • P. E. Oguntunde, O. S. Balogun, H. I. Okagbue, S. A. Bishop, The Weibull-Exponential Distribution: Its Properties and Applications, Journal of Applied Sciences 15 (11) (2015) 1305–1311.
Year 2022, Issue: 39, 19 - 41, 30.06.2022
https://doi.org/10.53570/jnt.1112959

Abstract

References

  • N. Eugene, C. Lee, F. Famoye, Beta-Normal Distribution and Its Applications, Communications in Statistics-Theory and Methods 31 (4) (2002) 497–512.
  • M. A. R. De Pascoa, E. M. M. Ortega, G. M. Cordeiro, The Kumaraswamy Generalized Gamma Distribution with Application in Survival Analysis, Statistical methodology 8 (5) (2011) 411–433.
  • G. M. Cordeiro, E. M. M. Ortega, D. C. C. da Cunha, The Exponentiated Generalized Class of Distributions, Journal of Data Science 11 (1) (2013) 1–27.
  • H. Torabi, N. H. Montazeri, The Logistic-Uniform Distribution and Its Applications, Communications in Statistics-Simulation and Computation 43 (10) (2014) 2551–2569.
  • M. M. Ristić, N. Balakrishnan, The Gamma-Exponentiated Exponential Distribution, Journal of Statistical Computation and Simulation 82 (8) (2012) 1191–1206.
  • C. Alexander, G. M. Cordeiro, E. M. M. Ortega, J. M. Sarabia, Generalized Beta-Generated Distributions, Computational Statistics & Data Analysis 56 (6) (2012) 1880–1897.
  • M. Amini, S. M. T. K. MirMostafaee, J. Ahmadi, Log-Gamma-Generated Families of Distributions, Statistics 48 (4) (2014) 913–932.
  • A. S. Hassan, S. E. Hemeda, A New Family of Additive Weibull-Generated Distributions, rn 55 (2016) 7.
  • M. Alizadeh, G. M. Cordeiro, E. De Brito, C. G. B. Dem´etrio, The Beta Marshall-Olkin Family of Distributions, Journal of Statistical Distributions and Applications 2 (1) (2015) 4.
  • B. Hosseini, M. Afshari, M. Alizadeh, The Generalized Odd Gamma-G Family of Distributions: Properties and Applications, Austrian Journal of Statistics 47 (2) (2018) 69–89.
  • H. Torabi, N. M. Hedesh, The Gamma-Uniform Distribution and Its Applications, Kybernetika 48 (1) (2012) 16–30.
  • M. H. Tahir, M. Zubair, M. Mansoor, G. M. Cordeiro, M. Alizadehk, G. G. Hamedani, A New Weibull-G Family of Distributions, Hacettepe Journal of Mathematics and Statistics 45 (2) (2016) 629–647.
  • A. Z. Afify, G. Cordeiro, F. Jamal, M. Elgarhy, M. Nasir, The Marshall-Olkin Odd Burr III-G Family of Distributions: Theory, Estimation and Applications.
  • Z. Azam, A. Ahmad Saeed, J. Riffat, A New Exponentiated Generalized Power Function Distribution, Advances and Applications in Statistics 61 (1) (2020) 33–63.
  • I. Abdullahi, J. Obalowu, The Generalized Odd Nakagami-G Family of Distributions: Properties and Applications, Naturengs 1 (2) (2020) 1–16.
  • M. D. Nichols, W. J. Padgett, A Bootstrap Control Chart for Weibull Percentiles, Quality and reliability engineering international 22 (2) (2006) 141–151.
  • P. E. Oguntunde, O. S. Balogun, H. I. Okagbue, S. A. Bishop, The Weibull-Exponential Distribution: Its Properties and Applications, Journal of Applied Sciences 15 (11) (2015) 1305–1311.
There are 17 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Article
Authors

Mathee Pongkitiwitoon This is me 0000-0002-7442-2391

İbrahim Abdullahi 0000-0002-7280-3035

Obalowa Job 0000-0001-5232-1509

Publication Date June 30, 2022
Submission Date May 7, 2022
Published in Issue Year 2022 Issue: 39

Cite

APA Pongkitiwitoon, M., Abdullahi, İ., & Job, O. (2022). A New Family of Odd Nakagami Exponential (NE-G) Distributions. Journal of New Theory(39), 19-41. https://doi.org/10.53570/jnt.1112959
AMA Pongkitiwitoon M, Abdullahi İ, Job O. A New Family of Odd Nakagami Exponential (NE-G) Distributions. JNT. June 2022;(39):19-41. doi:10.53570/jnt.1112959
Chicago Pongkitiwitoon, Mathee, İbrahim Abdullahi, and Obalowa Job. “A New Family of Odd Nakagami Exponential (NE-G) Distributions”. Journal of New Theory, no. 39 (June 2022): 19-41. https://doi.org/10.53570/jnt.1112959.
EndNote Pongkitiwitoon M, Abdullahi İ, Job O (June 1, 2022) A New Family of Odd Nakagami Exponential (NE-G) Distributions. Journal of New Theory 39 19–41.
IEEE M. Pongkitiwitoon, İ. Abdullahi, and O. Job, “A New Family of Odd Nakagami Exponential (NE-G) Distributions”, JNT, no. 39, pp. 19–41, June 2022, doi: 10.53570/jnt.1112959.
ISNAD Pongkitiwitoon, Mathee et al. “A New Family of Odd Nakagami Exponential (NE-G) Distributions”. Journal of New Theory 39 (June 2022), 19-41. https://doi.org/10.53570/jnt.1112959.
JAMA Pongkitiwitoon M, Abdullahi İ, Job O. A New Family of Odd Nakagami Exponential (NE-G) Distributions. JNT. 2022;:19–41.
MLA Pongkitiwitoon, Mathee et al. “A New Family of Odd Nakagami Exponential (NE-G) Distributions”. Journal of New Theory, no. 39, 2022, pp. 19-41, doi:10.53570/jnt.1112959.
Vancouver Pongkitiwitoon M, Abdullahi İ, Job O. A New Family of Odd Nakagami Exponential (NE-G) Distributions. JNT. 2022(39):19-41.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).