Research Article
BibTex RIS Cite

Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space

Year 2024, Issue: 46, 11 - 22, 29.03.2024
https://doi.org/10.53570/jnt.1399545

Abstract

This paper presents a method for computing the curvatures of equiaffine curves in three-dimensional affine space by utilizing local fractional derivatives. First, the concepts of $\alpha$-equiaffine arc length and $\alpha$-equiaffine curvatures are introduced by considering a general local involving conformable derivative, V-derivative, etc. In fractional calculus, equiaffine Frenet formulas and curvatures are reestablished. Then, it presents the relationships between the equiaffine curvatures and $\alpha$-equiaffine curvatures. Furthermore, graphical representations of equiaffine and $\alpha$-equiaffine curvatures illustrate their behavior under various conditions.

Ethical Statement

Çalışmada etik beyana gerek duyulacak bir veri kullanılmamıştır.

Supporting Institution

Çalışma hazırlanırken herhangi bir kurum tarafından maddi destek sağlanmamıştır.

Project Number

-

Thanks

-

References

  • D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics 7 (9) (2019) 830 10 pages.
  • M. E. Aydin, A. Mihai, A. Yokus, Applications of fractional calculus in equiaffine geometry: Plane curves with fractional order, Mathematical Methods in the Applied Sciences 44 (17) (2020) 13659-13669.
  • T. Yajima, S. Oiwa, K. Yamasaki, Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas, Fractional Calculus and Applied Analysis 21 (6) (2018) 1493-1505.
  • M. E. Aydın, M. Bektaş, A. O. Öğrenmis, A. Yokuş, Differential geometry of curves in Euclidean 3-space with fractional order, International Electronic Journal of Geometry 14 (1) (2021) 132-144.
  • U. Gözütok, H. A. Çoban, Y. Sağıroğlu, Frenet frame with respect to conformable derivative, Filomat 33 (6) (2019) 1541-1550.
  • A. Has, B. Yılmaz, Special fractional curve pairs with fractional calculus, International Electronic Journal of Geometry 15 (1) (2022) 132-144.
  • K. Lazopoulos, A. K. Lazopoulos, Fractional differential geometry of curves and surfaces, Progress in Fractional Differentiation and Applications 2 (3) (2016) 169-186.
  • V. E. Tarasov, On chain rule for fractional derivatives, Communications in Nonlinear Science and Numerical Simulation 30 (1) (2016) 1-4.
  • H. Bulut, H. M. Baskonus, Y. Pandir, The modified trial equation method for fractional wave equation and time fractional generalized burgers equation, Abstract and Applied Analysis 2013 (2013) 636802 8 pages.
  • H. F. Ismael, H. M. Baskonus, H. Bulut, W. Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with m-fractional, Optical and Quantum Electronics 55 (4) (2023) 303.
  • M. A. Dokuyucu, E. Çelik, H. Bulut, H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus 133 (3) (2018) 92.
  • R. L. Magin, Fractional Calculus in Bioengineering, Begell House, Connecticut, Chicago, 2006.
  • T. Yajima, H. Nagahama, Differential geometry of viscoelastic models with fractional-order derivatives, Journal of Physics A: Mathematical and Theoretical 43 (38) (2010) 385207 9 pages.
  • D. Baleanu, S. S. Sajjadi, A. Jajarmi, Ö. Defterli, On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control, Advances in Difference Equations 2021 (2021) 234 17 pages.
  • T. Yajima, H. Nagahama, Geometric structures of fractional dynamical systems in non-Riemannian space: Applications to mechanical and electromechanical systems, Annalen der Physik 530 (5) (2018) 1700391 9 pages.
  • I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering Academic Press, New York, 1999.
  • T. Abdeljawad, On conformable fractional calculus JournalofComputational and Applied Mathematics 279 (2015) 57-66.
  • J. Vanterler da C. Sousa, E. Capelas de Oliveira, Anew truncated m-fractional derivative type unifying some fractional derivative types with classical properties, International Journal of Analysis and Applications 16 (1) (2018) 83-96.
  • J. Vanterler da C. Sousa, E. Capelas de Oliveira, Mittag–Leffler functions and the truncated $\nu$-fractional derivative, Mediterranean Journal of Mathematics 14 (6) (2017) 244 24 pages.
  • A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, New York, 2006.
  • J. N. Clelland, From Frenet to Cartan: The method of moving frames, American Mathematical Society, Providence, 2017.
  • D. Davis, Generic affine differential geometry of curves in $\mathbb{R}^{n}$, Proceedings of the Royal Society of Edinburgh Section A 136 (6) (2006) 1195-1205.
  • H. W. Guggenheimer, Differential geometry, McGraw-Hill, New York, 1963.
  • M. E. Aydın, S. Kaya, Fractional equiaffine curvatures of curves in 3-dimensional affine space, International Journal of Maps in Mathematics 6 (1) (2023) 67-82.
Year 2024, Issue: 46, 11 - 22, 29.03.2024
https://doi.org/10.53570/jnt.1399545

Abstract

Project Number

-

References

  • D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics 7 (9) (2019) 830 10 pages.
  • M. E. Aydin, A. Mihai, A. Yokus, Applications of fractional calculus in equiaffine geometry: Plane curves with fractional order, Mathematical Methods in the Applied Sciences 44 (17) (2020) 13659-13669.
  • T. Yajima, S. Oiwa, K. Yamasaki, Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas, Fractional Calculus and Applied Analysis 21 (6) (2018) 1493-1505.
  • M. E. Aydın, M. Bektaş, A. O. Öğrenmis, A. Yokuş, Differential geometry of curves in Euclidean 3-space with fractional order, International Electronic Journal of Geometry 14 (1) (2021) 132-144.
  • U. Gözütok, H. A. Çoban, Y. Sağıroğlu, Frenet frame with respect to conformable derivative, Filomat 33 (6) (2019) 1541-1550.
  • A. Has, B. Yılmaz, Special fractional curve pairs with fractional calculus, International Electronic Journal of Geometry 15 (1) (2022) 132-144.
  • K. Lazopoulos, A. K. Lazopoulos, Fractional differential geometry of curves and surfaces, Progress in Fractional Differentiation and Applications 2 (3) (2016) 169-186.
  • V. E. Tarasov, On chain rule for fractional derivatives, Communications in Nonlinear Science and Numerical Simulation 30 (1) (2016) 1-4.
  • H. Bulut, H. M. Baskonus, Y. Pandir, The modified trial equation method for fractional wave equation and time fractional generalized burgers equation, Abstract and Applied Analysis 2013 (2013) 636802 8 pages.
  • H. F. Ismael, H. M. Baskonus, H. Bulut, W. Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with m-fractional, Optical and Quantum Electronics 55 (4) (2023) 303.
  • M. A. Dokuyucu, E. Çelik, H. Bulut, H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus 133 (3) (2018) 92.
  • R. L. Magin, Fractional Calculus in Bioengineering, Begell House, Connecticut, Chicago, 2006.
  • T. Yajima, H. Nagahama, Differential geometry of viscoelastic models with fractional-order derivatives, Journal of Physics A: Mathematical and Theoretical 43 (38) (2010) 385207 9 pages.
  • D. Baleanu, S. S. Sajjadi, A. Jajarmi, Ö. Defterli, On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control, Advances in Difference Equations 2021 (2021) 234 17 pages.
  • T. Yajima, H. Nagahama, Geometric structures of fractional dynamical systems in non-Riemannian space: Applications to mechanical and electromechanical systems, Annalen der Physik 530 (5) (2018) 1700391 9 pages.
  • I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering Academic Press, New York, 1999.
  • T. Abdeljawad, On conformable fractional calculus JournalofComputational and Applied Mathematics 279 (2015) 57-66.
  • J. Vanterler da C. Sousa, E. Capelas de Oliveira, Anew truncated m-fractional derivative type unifying some fractional derivative types with classical properties, International Journal of Analysis and Applications 16 (1) (2018) 83-96.
  • J. Vanterler da C. Sousa, E. Capelas de Oliveira, Mittag–Leffler functions and the truncated $\nu$-fractional derivative, Mediterranean Journal of Mathematics 14 (6) (2017) 244 24 pages.
  • A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, New York, 2006.
  • J. N. Clelland, From Frenet to Cartan: The method of moving frames, American Mathematical Society, Providence, 2017.
  • D. Davis, Generic affine differential geometry of curves in $\mathbb{R}^{n}$, Proceedings of the Royal Society of Edinburgh Section A 136 (6) (2006) 1195-1205.
  • H. W. Guggenheimer, Differential geometry, McGraw-Hill, New York, 1963.
  • M. E. Aydın, S. Kaya, Fractional equiaffine curvatures of curves in 3-dimensional affine space, International Journal of Maps in Mathematics 6 (1) (2023) 67-82.
There are 24 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Meltem Öğrenmiş 0000-0002-2626-0543

Project Number -
Early Pub Date March 28, 2024
Publication Date March 29, 2024
Submission Date December 3, 2023
Acceptance Date March 11, 2024
Published in Issue Year 2024 Issue: 46

Cite

APA Öğrenmiş, M. (2024). Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space. Journal of New Theory(46), 11-22. https://doi.org/10.53570/jnt.1399545
AMA Öğrenmiş M. Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space. JNT. March 2024;(46):11-22. doi:10.53570/jnt.1399545
Chicago Öğrenmiş, Meltem. “Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space”. Journal of New Theory, no. 46 (March 2024): 11-22. https://doi.org/10.53570/jnt.1399545.
EndNote Öğrenmiş M (March 1, 2024) Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space. Journal of New Theory 46 11–22.
IEEE M. Öğrenmiş, “Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space”, JNT, no. 46, pp. 11–22, March 2024, doi: 10.53570/jnt.1399545.
ISNAD Öğrenmiş, Meltem. “Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space”. Journal of New Theory 46 (March 2024), 11-22. https://doi.org/10.53570/jnt.1399545.
JAMA Öğrenmiş M. Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space. JNT. 2024;:11–22.
MLA Öğrenmiş, Meltem. “Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space”. Journal of New Theory, no. 46, 2024, pp. 11-22, doi:10.53570/jnt.1399545.
Vancouver Öğrenmiş M. Fractional Curvatures of Equiaffine Curves in Three-Dimensional Affine Space. JNT. 2024(46):11-22.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).