Research Article
BibTex RIS Cite

Synthesis and Structural Characterization of Mono Acid-type partial Cone Conformation Azocalix[4]arene

Year 2022, Volume: 6 Issue: 1, 24 - 28, 07.05.2022

Abstract

The synthesis of chromogenic mono acid-type azocalix[4]arene derivatives is described in this study. From p-tertbutylcalix[4]arene, which was made with p-tert-butylphenol as a starting material, a new family of azocalix[4]arene monocarboxylic acid derivatives (5a-d) were synthesized. Four azocalix[4]arenes (3a-d) were produced by attaching 4-methoxy-, 4-ethyl-, 4-chloro-, and 4-bromoaniline to 25,26,27,28-tetrahydroxycalix[4]arene through a diazo-coupling reaction. To obtain partial cone conformation acid derivatives, their mono ester units were synthesized with ethyl bromoacetate and hydrolyzed in a basic media (5a-d). Products were obtained in suitable (79-92 %) yields, with 25-(carboxymethoxy)-26,27,28- trihydroxy-5,11,17,23-tetra(4-methoxyphenyl)azocalix[4]arene (5a) being the product with the highest yield (92 %). FT-IR and 1H-NMR spectroscopy approaches, as well as elemental analysis techniques, were used to elucidated the synthesized
products.

References

  • [1] H. Deligz, S. Memon, Overview on Metal Cations Extraction by Azocalixarenes, Pakistan Journal of Analytical & Environmental Chemistry 12(1 & 2) (2011) 24.
  • [2] S. Shimizu, S. Shirakawa, T. Suzuki, Y. Sasaki, Water-soluble calixarenes as new inverse phase-transfer catalysts. Their application to aldol-type condensation and Michael addition reactions in water, Tetrahedron 57(29) (2001) 6169-6173.
  • [3] S. Elçin, M.M. Ilhan, H. Deligöz, Synthesis and spectral characterization of azo dyes derived from calix [4] arene and their application in dyeing of fibers, Journal of Inclusion Phenomena and Macrocyclic Chemistry 77(1) (2013) 259-267.
  • [4] J. Rebek Jr, Host–guest chemistry of calixarene capsules, Chemical Communications (8) (2000) 637-643.
  • [5] K. Sharma, P. Cragg, Calixarene based chemical sensors, Chemical sensors 1(9) (2011) 1-18.
  • [6] I. Leray, B. Valeur, Calixarene‐based fluorescent molecular sensors for toxic metals, European Journal of Inorganic Chemistry 2009(24) (2009) 3525-3535.
  • [7] X. Fan, X. Guo, Development of calixarene-based drug nanocarriers, Journal of Molecular Liquids 325 (2021) 115246.
  • [8] W. Śliwa, Calixarene complexes with transition metal ions, Journal of inclusion phenomena and macrocyclic chemistry 52(1) (2005) 13-37.
  • [9] F. Yang, H. Guo, J. Vicens, Mini-review: calixarene liquid crystals, Journal of Inclusion Phenomena and Macrocyclic Chemistry 80(3) (2014) 177-186.
  • [10] Z. Niu, Y. Liu, X. Li, H. Zhu, M. Zhang, K. Yan, H. Chen, Colorimetric detection of sulfamethazine based on target resolved calixarene derivative stabilized gold nanoparticles aggregation, Microchimica Acta 189(2) (2022) 1-7.
  • [11] S. Thakkar, L.F. Dumée, M. Gupta, B.R. Singh, W. Yang, Nano–enabled sensors for detection of arsenic in water, Water Research 188 (2021) 116538.
  • [12] K. Singh, S. Sharma, S. Shriwastava, P. Singla, M. Gupta, C. Tripathi, Significance of nano-materials, designs consideration and fabrication techniques on performances of strain sensors-A review, Materials Science in Semiconductor Processing 123 (2021) 105581.
  • [13] A. Anandababu, S. Anandan, A. Syed, N. Marraiki, M. Ashokkumar, Upper rim modified calix [4] arene towards selective turn-on fluorescence sensor for spectroscopically silent metal ions, Inorganica Chimica Acta 516 (2021) 120133.
  • [14] B. Gassoumi, M. Echabaane, F.B. Mohamed, L. Nouar, F. Madi, A. Karayel, H. Ghalla, M. Castro, F. Melendez, S. Özkınalı, Azo-methoxy-calix [4] arene complexes with metal cations for chemical sensor applications: Characterization, QTAIM analyses and dispersion-corrected DFT-computations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 264 (2022) 120242.
  • [15] H.M. Chawla, P. Goel, R. Shukla, D.S. Black, N. Kumar, New lower rim looped calix [4] arene for ratiometric and chromogenic recognition of Cu2+, Journal of Inclusion Phenomena and Macrocyclic Chemistry 80(3) (2014) 201-207.
  • [16] H. Deligöz, Azocalixarenes: synthesis, characterization, complexation, extraction, absorption properties and thermal behaviours, Journal of inclusion phenomena and macrocyclic chemistry 55(3) (2006) 197-218.
  • [17] M. Yilmaz, H. Deligöz, Studies on Compounds of Uranium (M) with Two vic Dioxime Derivatives of Gilixi [4] Arene, Synthesis and reactivity in inorganic and metal-organic chemistry 28(5) (1998) 851-861.
  • [18] A.B. Descalzo, K. Rurack, H. Weisshoff, R. Martínez-Máñez, M.D. Marcos, P. Amorós, K. Hoffmann, J. Soto, Rational design of a chromo-and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates, Journal of the American Chemical Society 127(1) (2005) 184-200.
  • [19] E.J. Cho, B.J. Ryu, Y.J. Lee, K.C. Nam, Visible colorimetric fluoride ion sensors, Organic letters 7(13) (2005) 2607-2609.
  • [20] Y. Lu, W. Liao, Extraction and separation of trivalent rare earth metal ions from nitrate medium by p-phosphonic acid calix [4] arene, Hydrometallurgy 165 (2016) 300-305.
  • [21] A. Bayrakdar, H.H. Kart, S. Elcin, H. Deligoz, M. Karabacak, Synthesis and DFT calculation of a novel 5, 17-di (2-antracenylazo)-25, 27-di (ethoxycarbonylmethoxy)-26, 28-dihydroxycalix [4] arene, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015) 607-617.
  • [22] H. Deligöz, Synthesis of oligomer and styrene polymer-supported calix [4] arene derivatives and selective extraction of Fe3+, Supramolecular Chemistry 15(5) (2003) 317-321.
  • [23] O.A. Yesypenko, A.O. Osipova, O.O. Tribrat, S.O. Kravchenko, O.M. Usachov, V.V. Dyakonenko, A.B. Ryabitskii, V.V. Pirozhenko, S.V. Shishkina, A.B. Rozhenko, Synthesis and enantiorecognition properties of stereoisomeres of inherently chiral propyloxy-octyloxy-calix [4] arene acetic acids, Tetrahedron 80 (2021) 131894.
  • [24] C.H.C. Zacchi, S.S. Vieira, J.D. Ardisson, M.H. Araujo, A. de Fatima, Synthesis of environmentally friendly, magnetic acid-type calix [4] arene catalyst for obtaining Biginelli adducts, Journal of Saudi Chemical Society 23(8) (2019) 1060-1069.
  • [25] S. Sayin, M. Yilmaz, Brønsted acidic magnetic nano-Fe3O4-adorned calix [n] arene sulfonic acids: synthesis and application in the nucleophilic substitution of alcohols, Tetrahedron 70(37) (2014) 6669-6676.
  • [26] S. Elçin, H. Deligöz, A versatile approach toward chemosensor for Hg2+ based on para-substituted phenylazocalix [4] arene containing mono ethyl ester unit, Dyes and Pigments 107 (2014) 166-173.
  • [27] Y. Morita, T. Agawa, E. Nomura, H. Taniguchi, Syntheses and NMR behavior of calix [4] quinone and calix [4] hydroquinone, The Journal of Organic Chemistry 57(13) (1992) 3658-3662.
  • [28] C.D. Gutsche, Calixarenes, Accounts of Chemical Research 16(5) (1983) 161-170.
  • [29] K. Park, H.-J. Son, J.-I. Choe, mPW1PW91 study for conformational isomers of methylene bridge-monosubstituted tetramethoxycalix [4] arenes, Journal of Industrial and Engineering Chemistry 20(5) (2014) 3276-3282.
  • [30] A. Arduini, A. Pochini, S. Raverberi, R. Ungaro, p-t-Butyl-calix [4] arene tetracarboxylic acid. A water soluble calixarene in a cone structure, Journal of the Chemical Society, Chemical Communications (15) (1984) 981-982.
There are 30 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section Research Article
Authors

Serkan Elçin This is me

Publication Date May 7, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite