Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 6 Sayı: 2, 189 - 205, 31.12.2023
https://doi.org/10.55930/jonas.1374658

Öz

Kaynakça

  • 1. Akbari, P. & Olfati, F. (2020). Preparing Activated Carbon from Chestnut Shell and Binding Polyacrylic Amidoxime to Its Surface to Remove Some Metals from Aqueous Solution. Arc. Pharm. Pract., 1, 37.
  • 2. Akkari, I., Graba, Z., Bezzi N., Kaci, M.M., Merzeg, F.A., Bait N., Ferhati, A., Dotto, G.L. & Benguerba, Y. (2023). Effective Removal of Cationic Dye on Activated Carbon Made from Cactus Fruit Peels: A Combined Experimental and Theoretical Study. Environ. Sci. Pollut. Res., 30 (2), 3027–44.
  • 3. Al Kausor, M., Gupta S.S., Bhattacharyya, K.G. & Chakrabortty, D. (2022). Montmorillonite and Modified Montmorillonite as Adsorbents for Removal of Water Soluble Organic Dyes: A Review on Current Status of the Art. Inorg. Chem. Commun., 143, 109686.
  • 4. Altintig, E., Onaran, M., Sarı, A., Altundag, H. & Tuzen, M. (2018). Preparation, Characterization and Evaluation of Bio-Based Magnetic Activated Carbon for Effective Adsorption of Malachite Green from Aqueous Solution. Inorg. Chem. Commun., 220, 313–21.
  • 5. Arab, C., El Kurdi, R. & Patra, D. (2022). Zinc curcumin oxide nanoparticles for enhanced adsorption of Congo red: kinetics and adsorption isotherms study. Mater. Today Chem. 23, 100701.
  • 6. Aragaw, T.A. & Bogale, F.M. (2021). Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review. Front. Environ. Sci., 9, 764958.
  • 7. Bal, G. & Thakur, A. (2022). Distinct Approaches of Removal of Dyes from Wastewater: A Review. Mater. Today: Proc., 50, 1575–79.
  • 8. Bayantong, A.R.B., Shih Y.J., Dennis C.O., Abarca, R.R.M. Dong, C.D. & Luna, M.D.G. (2021). Adsorptive Removal of Dye in Wastewater by Metal Ferrite-Enabled Graphene Oxide Nanocomposites. Chemosphere, 274, 129518.
  • 9. Bennani Karim, A., Mounir, B., Hachkar, M., Bakasse, M. & Yaacoubi, A. (2009). Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay. J. Hazard. Mater., 168, 304-309.
  • 10. Bergaoui, M., Nakhli, A., Benguerba, Y., Khalfaoui, M., Erto, A., Soetaredjo, F.E., Ismadji, S. & Ernst, B. (2018). Novel Insights into the Adsorption Mechanism of Methylene Blue onto Organo-Bentonite: Adsorption Isotherms Modeling and Molecular Simulation. J. Mol. Liq., 272, 697–707.
  • 11. Beydaghdari, M., Saboor, F.H., Babapoor, A., Karve, V.V. & Asgari, M. (2022). Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment. Energies, 15 (6), 2023.
  • 12. Demiral, H., Baykul, E., Gezer, M.D., Erkoç, S., Engin, A. & Baykul, M.C. (2014). Preparation and Characterization of Activated Carbon from Chestnut Shell and Its Adsorption Characteristics for Lead. Sep. Sci. Technol., 49 (17), 2711–20.
  • 13. Demiral, H., Demiral, İ., Tümsek, F. & Karabacakoğlu, B. (2008). Adsorption of Chromium (VI) from Aqueous Solution by Activated Carbon Derived from Olive Bagasse and Applicability of Different Adsorption Models. Chem. Eng. J., 144 (2), 188–96.
  • 14. Dutta, S., Gupta, B., Srivastava, S.K. & Gupta, A.K. (2021). Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv., 2 (14), 4497–4531.
  • 15. Errais, E., Duplay, J., Elhabiri, M., Khodja, M., Ocampo, R., Baltenweck-Guyot, R. & Darragi, F. (2012). Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloids Surf. A Physicochem., 403, 69-78.
  • 16. Extross, A., Waknis, A., Tagad, C., Gedam, V.V. & Pathak, P.D. (2023) Adsorption of congo red using carbon from leaves and stem of water hyacinth: equilibrium, kinetics, thermodynamic studies’, Int. J. Environ. Sci. Technol., 20 (2) 1607–1644.
  • 17. Foroutan, R., Peighambardoust, S.J., Peighambardoust, S.H., Pateiro, M. & Lorenzo, J.M. (2021). Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon/Fe3O4 Magnetic Nanocomposite from Aqueous Solutions: A Kinetic, Equilibrium and Thermodynamic Study. Molecules, 26 (8), 2241.
  • 18. Hasani, S., Ardejani F.D. & Olya, M.E. (2017). Equilibrium and kinetic studies of azo dye (Basic Red 18) adsorption onto montmorillonite: Numerical simulation and laboratory experiments. Korean J. Chem. Eng. 34 (8,), 2265–2274.
  • 19. Hesas, R. H., Arami-Niya, A., Wan Daud, W.M.A. & Sahu, J.N. (2013). Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption. BioResour., 8 (2), 2950–66.
  • 20. Hidayat, E., Harada, H., Mitoma, Y., Yonemura, S., Halem, H.I.A. (2022). Rapid Removal of Acid Red 88 by Zeolite/Chitosan Hydrogel in Aqueous Solution. Polymers, 14, (5), 893.
  • 21. Husien, Sh, El-taweel, R.M., Salim, A.I., Fahim, I.S., Said, L.A. & Radwan, A.G. (2022). Review of Activated Carbon Adsorbent Material for Textile Dyes Removal: Preparation, and Modelling. Curr. Res. Green Sustain. Chem., 5, 100325.
  • 22. Isik, Z., Saleh, M., M’barek, I., Yabalak, E., Dizge, N. & Deepanraj, B. (2022). Investigation of the adsorption performance of cationic and anionic dyes using hydrochared waste human hair. Biomass Conv. Bioref., Mar., doi: 10.1007/s13399-022-02582-2.
  • 23. Jawad, A.H., Abdulhameed, A.S., Wilson, L.D., Syed-Hassan, S.S.A., ALOthman, Z.A. & Khan, M.R. (2021). High Surface Area and Mesoporous Activated Carbon from KOH-Activated Dragon Fruit Peels for Methylene Blue Dye Adsorption: Optimization and Mechanism Study. Chin. J. Chem. Eng., 32, 281–90.
  • 24. Kang Y., Zhang, B., Miao, J., Yu, Y., Fu, J., Jia, B. & Li, L. (2023) Superparamagnetic Fe3O4@Al-Based Metal-Organic Framework Nanocomposites with High-Performance Removal of Azo Dyes. SSRN Journal doi: 10.2139/ssrn.4359337.
  • 25. Karapınar, H.S., (2022). Adsorption Performance of Activated Carbon Synthesis by ZnCl2, KOH, H3PO4 with Different Activation Temperatures from Mixed Fruit Seeds. Environ. Technol., 43 (9), 1417–35.
  • 26. Kavitha, D & Namasivayam, C. (2007). Experimental and Kinetic Studies on Methylene Blue Adsorption by Coir Pith Carbon. Bioresour. Technol., 98 (1), 14–21.
  • 27. Kazemipour, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M. & Kermani, H.R. (2008). Removal of Lead, Cadmium, Zinc, and Copper from Industrial Wastewater by Carbon Developed from Walnut, Hazelnut, Almond, Pistachio Shell, and Apricot Stone. J. Hazard. Mater., 150 (2), 322–27.
  • 28. Khan, T.A., Nouman, Md., Dua, D., Khan, S.A. & Alharthi, S.S. (2022). Adsorptive Scavenging of Cationic Dyes from Aquatic Phase by H3PO4 Activated Indian Jujube (Ziziphus Mauritiana) Seeds Based Activated Carbon: Isotherm, Kinetics, and Thermodynamic Study. J. Saudi Chem. Soc., 26 (2), 101417.
  • 29. Kong, L. & Zhang, M. (2022). Adsorption of Methylene Blue on Chestnut Shell-Based Activated Carbon: Calculation of Thermodynamic Parameters for Solid–Liquid Interface Adsorption. Catalysts, 12 (8), 813.
  • 30. Lafi, R., Montasser, I. & Hafiane, A. (2019). Adsorption of Congo Red Dye from Aqueous Solutions by Prepared Activated Carbon with Oxygen-Containing Functional Groups and Its Regeneration. Adsorp. Sci. Technol., 37 (1–2), 160–81.
  • 31. Li, C.J., Zhang, Y.J., Chen, H., He, P.Y. & Meng, Q. (2022). Development of Porous and Reusable Geopolymer Adsorbents for Dye Wastewater Treatment. Journal of Cleaner Production 348, 131278.
  • 32. Lian, L., Guo, L., Guo, C. (2009). Adsorption of Congo red from aqueous solution onnto Ca-bentonite. J.Hazard. Mater., 161, 126-131.
  • 33. Liu, T., Li, Y., Du,Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang W., Wang K., Zhu H. & Wu D. (2012). Adsorption of Methylene Blue from Aqueous Solution by Graphene. Colloids Surf. B., 90, 197–203.
  • 34. Lu, F., Dong, A., Ding, G., Xu, K., Li, J. & You, L. (2019). Magnetic porous polymer composite for high performance adsorption of acid red 18 based on melamine resin and chitosan. J. Mol. Liq., 294, 111515.
  • 35. Maximova, A. & Koumanova, B. (2008). Equilibrium and kinetics study of adsorption of basic dyes onto perfil from aqueous solutions. J. Univ. Chem. Technol. Metall., 43 (1). 101–108.
  • 36. Özçimen, D. & Meriçboyu, A.E. (2009). Removal of Copper from Aqueous Solutions by Adsorption onto Chestnut Shell and Grapeseed Activated Carbons. J. Hazard. Mater., 168 (2–3), 1118–25.
  • 37. Prahas, D., Kartika, Y., Indraswati, N. & Ismadji, S. (2008). Activated Carbon from Jackfruit Peel Waste by H3PO4 Chemical Activation: Pore Structure and Surface Chemistry Characterization. Chem. Eng. J., 140 (1–3), 32–42.
  • 38. Rivera, M., Pazos, M. & Sanromán, M.A., (2011). Development of an Electrochemical Cell for the Removal of Reactive Black 5. Desalination, 274 (1–3), 39–43.
  • 39. Saini, B., Dey, A. (2022). Synthesis and Characterization of Copolymer Adsorbent for Crystal Violet Dye Removal from Water. Materials Today: Proceedings 61, 342–50.
  • 40. Saratale, R.G., Sivapathan, S.S., Jung, W.J., Kim, H.Y., Saratale, G.D. & Kim, D.S. (2016). Preparation of activated carbons from peach stone by H4P2O7 activation and its application for the removal of Acid Red 18 and dye containing wastewater. J. Environ. Sci. Health A., 51 (2), 164–177.
  • 41. Selengil, U. & Yıldız, D. (2022). Investigation of the Methylene Blue Adsorption onto Waste Perlite. Desalin. Water Treat., 262, 235–47.
  • 42. Şencan, A., Karaboyacı, M. & Kılıç, M. (2015). Determination of Lead (II) Sorption Capacity of Hazelnut Shell and Activated Carbon Obtained from Hazelnut Shell Activated with ZnCl2. Environ. Sci. Pollut. Res., 22 (5), 3238–48.
  • 43. Sh. Gohr, M., Abd-Elhamid, A.I., El-Shanshory, A.A., & Soliman, H.M.A. (2022). Adsorption of Cationic Dyes onto Chemically Modified Activated Carbon: Kinetics and Thermodynamic Study. J. Mol. Liq., 346, 118227.
  • 44. Shafeeyan, M. S., Daud, W.M.A.W., Houshmand, A. & Arami-Niya, A. (2011). Ammonia Modification of Activated Carbon to Enhance Carbon Dioxide Adsorption: Effect of Pre-Oxidation. App. Surf. Sci., 257 (9), 3936–42.
  • 45. Shakoor, Sadia, & Abu Nasar. (2016). Removal of Methylene Blue Dye from Artificially Contaminated Water Using Citrus Limetta Peel Waste as a Very Low Cost Adsorbent. J. Taiwan Inst. Chem., 66, 154–63.
  • 46. Sharma, A. & Bhattacharyya, K.G. (2005). Adsorption of Chromium (VI) on Azadirachta Indica (Neem) Leaf Powder. Adsorption 10 (4), 327–38.
  • 47. Sun, Y., Li, H., Li, G., Gao, B., Yue, Q. & Li, X. (2016). Characterization and Ciprofloxacin Adsorption Properties of Activated Carbons Prepared from Biomass Wastes by H3PO4 Activation. Biores. Technol., 217, 239–44.
  • 48. Tumsek, F. (2019). Investigation of deep red adsorption using bentonite clay modified with a surfactant. Fresenius Environ. Bull., 28 (11), 7816-7822.
  • 49. Xue, H., Gao, X., Seliem, M.K., Mobarak, M., Dong, R., Wang, X., Fu, K., Li, Q. & Li, Z. (2023). Efficient Adsorption of Anionic Azo Dyes on Porous Heterostructured MXene/Biomass Activated Carbon Composites: Experiments, Characterization, and Theoretical Analysis via Advanced Statistical Physics Models. Chem. Eng. J., 451, 138735.
  • 50. Yorgun, S., Karakehya, N. & Yıldız, D. (2017). Adsorption of Methylene Blue onto Activated Carbon Obtained from ZnCl2. Desalin. Water Treat., 58, 274–84.
  • 51. Yuh-Shan, H. (2004). Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics, 59 (1), 171–77.
  • 52. Zhang, M., Liu, X., Li, B., Li, W. Tan, Z., Wang, Q., Zhang, L. (2021). Removal of Toxic Dyes from Aqueous Solutions by Adsorption onto a Novel Activated Carbon Prepared from Chestnut Shell. Desalin. Water Treat., 222, 246–58.

ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL

Yıl 2023, Cilt: 6 Sayı: 2, 189 - 205, 31.12.2023
https://doi.org/10.55930/jonas.1374658

Öz

Adsorption of Deep Red (DR) on activated carbon (AC) produced from chestnut shell has been studied. Chemical activation process with ZnCl2 was applied to the ground chestnut shells at 3:1 (ZnCl2/Raw Material) impregnation ratio, and then at 500 °C, the carbonization process was used to produce AC. The surface area of the AC was defined as 2187 m2/g. Effects of AC dose, contact time, pH, temperature and initial concentration on deepred adsorption have been studied. In experimental studies, 97.4% dye removal was achieved using 0.1 g AC at pH 2.5, 45°C and at 100 mg/L. Dye removal has been seen to increase at all initial concentrations as the temperature increased. The kinetic data are corresponding to the pseudo 2nd order kinetic model. The finding was that the adsorption process corresponding to the Freundlich isotherm model. According to ΔS, ΔH, and ΔG thermodynamic data, DR adsorption on AC is an endothermic and chemical adsorption. The study’s findings revealed that AC prepared from chestnut shell is suitable for removing DR from aqueous solutions.

Kaynakça

  • 1. Akbari, P. & Olfati, F. (2020). Preparing Activated Carbon from Chestnut Shell and Binding Polyacrylic Amidoxime to Its Surface to Remove Some Metals from Aqueous Solution. Arc. Pharm. Pract., 1, 37.
  • 2. Akkari, I., Graba, Z., Bezzi N., Kaci, M.M., Merzeg, F.A., Bait N., Ferhati, A., Dotto, G.L. & Benguerba, Y. (2023). Effective Removal of Cationic Dye on Activated Carbon Made from Cactus Fruit Peels: A Combined Experimental and Theoretical Study. Environ. Sci. Pollut. Res., 30 (2), 3027–44.
  • 3. Al Kausor, M., Gupta S.S., Bhattacharyya, K.G. & Chakrabortty, D. (2022). Montmorillonite and Modified Montmorillonite as Adsorbents for Removal of Water Soluble Organic Dyes: A Review on Current Status of the Art. Inorg. Chem. Commun., 143, 109686.
  • 4. Altintig, E., Onaran, M., Sarı, A., Altundag, H. & Tuzen, M. (2018). Preparation, Characterization and Evaluation of Bio-Based Magnetic Activated Carbon for Effective Adsorption of Malachite Green from Aqueous Solution. Inorg. Chem. Commun., 220, 313–21.
  • 5. Arab, C., El Kurdi, R. & Patra, D. (2022). Zinc curcumin oxide nanoparticles for enhanced adsorption of Congo red: kinetics and adsorption isotherms study. Mater. Today Chem. 23, 100701.
  • 6. Aragaw, T.A. & Bogale, F.M. (2021). Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review. Front. Environ. Sci., 9, 764958.
  • 7. Bal, G. & Thakur, A. (2022). Distinct Approaches of Removal of Dyes from Wastewater: A Review. Mater. Today: Proc., 50, 1575–79.
  • 8. Bayantong, A.R.B., Shih Y.J., Dennis C.O., Abarca, R.R.M. Dong, C.D. & Luna, M.D.G. (2021). Adsorptive Removal of Dye in Wastewater by Metal Ferrite-Enabled Graphene Oxide Nanocomposites. Chemosphere, 274, 129518.
  • 9. Bennani Karim, A., Mounir, B., Hachkar, M., Bakasse, M. & Yaacoubi, A. (2009). Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay. J. Hazard. Mater., 168, 304-309.
  • 10. Bergaoui, M., Nakhli, A., Benguerba, Y., Khalfaoui, M., Erto, A., Soetaredjo, F.E., Ismadji, S. & Ernst, B. (2018). Novel Insights into the Adsorption Mechanism of Methylene Blue onto Organo-Bentonite: Adsorption Isotherms Modeling and Molecular Simulation. J. Mol. Liq., 272, 697–707.
  • 11. Beydaghdari, M., Saboor, F.H., Babapoor, A., Karve, V.V. & Asgari, M. (2022). Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment. Energies, 15 (6), 2023.
  • 12. Demiral, H., Baykul, E., Gezer, M.D., Erkoç, S., Engin, A. & Baykul, M.C. (2014). Preparation and Characterization of Activated Carbon from Chestnut Shell and Its Adsorption Characteristics for Lead. Sep. Sci. Technol., 49 (17), 2711–20.
  • 13. Demiral, H., Demiral, İ., Tümsek, F. & Karabacakoğlu, B. (2008). Adsorption of Chromium (VI) from Aqueous Solution by Activated Carbon Derived from Olive Bagasse and Applicability of Different Adsorption Models. Chem. Eng. J., 144 (2), 188–96.
  • 14. Dutta, S., Gupta, B., Srivastava, S.K. & Gupta, A.K. (2021). Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv., 2 (14), 4497–4531.
  • 15. Errais, E., Duplay, J., Elhabiri, M., Khodja, M., Ocampo, R., Baltenweck-Guyot, R. & Darragi, F. (2012). Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloids Surf. A Physicochem., 403, 69-78.
  • 16. Extross, A., Waknis, A., Tagad, C., Gedam, V.V. & Pathak, P.D. (2023) Adsorption of congo red using carbon from leaves and stem of water hyacinth: equilibrium, kinetics, thermodynamic studies’, Int. J. Environ. Sci. Technol., 20 (2) 1607–1644.
  • 17. Foroutan, R., Peighambardoust, S.J., Peighambardoust, S.H., Pateiro, M. & Lorenzo, J.M. (2021). Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon/Fe3O4 Magnetic Nanocomposite from Aqueous Solutions: A Kinetic, Equilibrium and Thermodynamic Study. Molecules, 26 (8), 2241.
  • 18. Hasani, S., Ardejani F.D. & Olya, M.E. (2017). Equilibrium and kinetic studies of azo dye (Basic Red 18) adsorption onto montmorillonite: Numerical simulation and laboratory experiments. Korean J. Chem. Eng. 34 (8,), 2265–2274.
  • 19. Hesas, R. H., Arami-Niya, A., Wan Daud, W.M.A. & Sahu, J.N. (2013). Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption. BioResour., 8 (2), 2950–66.
  • 20. Hidayat, E., Harada, H., Mitoma, Y., Yonemura, S., Halem, H.I.A. (2022). Rapid Removal of Acid Red 88 by Zeolite/Chitosan Hydrogel in Aqueous Solution. Polymers, 14, (5), 893.
  • 21. Husien, Sh, El-taweel, R.M., Salim, A.I., Fahim, I.S., Said, L.A. & Radwan, A.G. (2022). Review of Activated Carbon Adsorbent Material for Textile Dyes Removal: Preparation, and Modelling. Curr. Res. Green Sustain. Chem., 5, 100325.
  • 22. Isik, Z., Saleh, M., M’barek, I., Yabalak, E., Dizge, N. & Deepanraj, B. (2022). Investigation of the adsorption performance of cationic and anionic dyes using hydrochared waste human hair. Biomass Conv. Bioref., Mar., doi: 10.1007/s13399-022-02582-2.
  • 23. Jawad, A.H., Abdulhameed, A.S., Wilson, L.D., Syed-Hassan, S.S.A., ALOthman, Z.A. & Khan, M.R. (2021). High Surface Area and Mesoporous Activated Carbon from KOH-Activated Dragon Fruit Peels for Methylene Blue Dye Adsorption: Optimization and Mechanism Study. Chin. J. Chem. Eng., 32, 281–90.
  • 24. Kang Y., Zhang, B., Miao, J., Yu, Y., Fu, J., Jia, B. & Li, L. (2023) Superparamagnetic Fe3O4@Al-Based Metal-Organic Framework Nanocomposites with High-Performance Removal of Azo Dyes. SSRN Journal doi: 10.2139/ssrn.4359337.
  • 25. Karapınar, H.S., (2022). Adsorption Performance of Activated Carbon Synthesis by ZnCl2, KOH, H3PO4 with Different Activation Temperatures from Mixed Fruit Seeds. Environ. Technol., 43 (9), 1417–35.
  • 26. Kavitha, D & Namasivayam, C. (2007). Experimental and Kinetic Studies on Methylene Blue Adsorption by Coir Pith Carbon. Bioresour. Technol., 98 (1), 14–21.
  • 27. Kazemipour, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M. & Kermani, H.R. (2008). Removal of Lead, Cadmium, Zinc, and Copper from Industrial Wastewater by Carbon Developed from Walnut, Hazelnut, Almond, Pistachio Shell, and Apricot Stone. J. Hazard. Mater., 150 (2), 322–27.
  • 28. Khan, T.A., Nouman, Md., Dua, D., Khan, S.A. & Alharthi, S.S. (2022). Adsorptive Scavenging of Cationic Dyes from Aquatic Phase by H3PO4 Activated Indian Jujube (Ziziphus Mauritiana) Seeds Based Activated Carbon: Isotherm, Kinetics, and Thermodynamic Study. J. Saudi Chem. Soc., 26 (2), 101417.
  • 29. Kong, L. & Zhang, M. (2022). Adsorption of Methylene Blue on Chestnut Shell-Based Activated Carbon: Calculation of Thermodynamic Parameters for Solid–Liquid Interface Adsorption. Catalysts, 12 (8), 813.
  • 30. Lafi, R., Montasser, I. & Hafiane, A. (2019). Adsorption of Congo Red Dye from Aqueous Solutions by Prepared Activated Carbon with Oxygen-Containing Functional Groups and Its Regeneration. Adsorp. Sci. Technol., 37 (1–2), 160–81.
  • 31. Li, C.J., Zhang, Y.J., Chen, H., He, P.Y. & Meng, Q. (2022). Development of Porous and Reusable Geopolymer Adsorbents for Dye Wastewater Treatment. Journal of Cleaner Production 348, 131278.
  • 32. Lian, L., Guo, L., Guo, C. (2009). Adsorption of Congo red from aqueous solution onnto Ca-bentonite. J.Hazard. Mater., 161, 126-131.
  • 33. Liu, T., Li, Y., Du,Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang W., Wang K., Zhu H. & Wu D. (2012). Adsorption of Methylene Blue from Aqueous Solution by Graphene. Colloids Surf. B., 90, 197–203.
  • 34. Lu, F., Dong, A., Ding, G., Xu, K., Li, J. & You, L. (2019). Magnetic porous polymer composite for high performance adsorption of acid red 18 based on melamine resin and chitosan. J. Mol. Liq., 294, 111515.
  • 35. Maximova, A. & Koumanova, B. (2008). Equilibrium and kinetics study of adsorption of basic dyes onto perfil from aqueous solutions. J. Univ. Chem. Technol. Metall., 43 (1). 101–108.
  • 36. Özçimen, D. & Meriçboyu, A.E. (2009). Removal of Copper from Aqueous Solutions by Adsorption onto Chestnut Shell and Grapeseed Activated Carbons. J. Hazard. Mater., 168 (2–3), 1118–25.
  • 37. Prahas, D., Kartika, Y., Indraswati, N. & Ismadji, S. (2008). Activated Carbon from Jackfruit Peel Waste by H3PO4 Chemical Activation: Pore Structure and Surface Chemistry Characterization. Chem. Eng. J., 140 (1–3), 32–42.
  • 38. Rivera, M., Pazos, M. & Sanromán, M.A., (2011). Development of an Electrochemical Cell for the Removal of Reactive Black 5. Desalination, 274 (1–3), 39–43.
  • 39. Saini, B., Dey, A. (2022). Synthesis and Characterization of Copolymer Adsorbent for Crystal Violet Dye Removal from Water. Materials Today: Proceedings 61, 342–50.
  • 40. Saratale, R.G., Sivapathan, S.S., Jung, W.J., Kim, H.Y., Saratale, G.D. & Kim, D.S. (2016). Preparation of activated carbons from peach stone by H4P2O7 activation and its application for the removal of Acid Red 18 and dye containing wastewater. J. Environ. Sci. Health A., 51 (2), 164–177.
  • 41. Selengil, U. & Yıldız, D. (2022). Investigation of the Methylene Blue Adsorption onto Waste Perlite. Desalin. Water Treat., 262, 235–47.
  • 42. Şencan, A., Karaboyacı, M. & Kılıç, M. (2015). Determination of Lead (II) Sorption Capacity of Hazelnut Shell and Activated Carbon Obtained from Hazelnut Shell Activated with ZnCl2. Environ. Sci. Pollut. Res., 22 (5), 3238–48.
  • 43. Sh. Gohr, M., Abd-Elhamid, A.I., El-Shanshory, A.A., & Soliman, H.M.A. (2022). Adsorption of Cationic Dyes onto Chemically Modified Activated Carbon: Kinetics and Thermodynamic Study. J. Mol. Liq., 346, 118227.
  • 44. Shafeeyan, M. S., Daud, W.M.A.W., Houshmand, A. & Arami-Niya, A. (2011). Ammonia Modification of Activated Carbon to Enhance Carbon Dioxide Adsorption: Effect of Pre-Oxidation. App. Surf. Sci., 257 (9), 3936–42.
  • 45. Shakoor, Sadia, & Abu Nasar. (2016). Removal of Methylene Blue Dye from Artificially Contaminated Water Using Citrus Limetta Peel Waste as a Very Low Cost Adsorbent. J. Taiwan Inst. Chem., 66, 154–63.
  • 46. Sharma, A. & Bhattacharyya, K.G. (2005). Adsorption of Chromium (VI) on Azadirachta Indica (Neem) Leaf Powder. Adsorption 10 (4), 327–38.
  • 47. Sun, Y., Li, H., Li, G., Gao, B., Yue, Q. & Li, X. (2016). Characterization and Ciprofloxacin Adsorption Properties of Activated Carbons Prepared from Biomass Wastes by H3PO4 Activation. Biores. Technol., 217, 239–44.
  • 48. Tumsek, F. (2019). Investigation of deep red adsorption using bentonite clay modified with a surfactant. Fresenius Environ. Bull., 28 (11), 7816-7822.
  • 49. Xue, H., Gao, X., Seliem, M.K., Mobarak, M., Dong, R., Wang, X., Fu, K., Li, Q. & Li, Z. (2023). Efficient Adsorption of Anionic Azo Dyes on Porous Heterostructured MXene/Biomass Activated Carbon Composites: Experiments, Characterization, and Theoretical Analysis via Advanced Statistical Physics Models. Chem. Eng. J., 451, 138735.
  • 50. Yorgun, S., Karakehya, N. & Yıldız, D. (2017). Adsorption of Methylene Blue onto Activated Carbon Obtained from ZnCl2. Desalin. Water Treat., 58, 274–84.
  • 51. Yuh-Shan, H. (2004). Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics, 59 (1), 171–77.
  • 52. Zhang, M., Liu, X., Li, B., Li, W. Tan, Z., Wang, Q., Zhang, L. (2021). Removal of Toxic Dyes from Aqueous Solutions by Adsorption onto a Novel Activated Carbon Prepared from Chestnut Shell. Desalin. Water Treat., 222, 246–58.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Uğur Selengil

Derya Yıldız 0000-0002-5628-8424

Burcu Tan 0000-0003-4661-9661

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 11 Ekim 2023
Kabul Tarihi 7 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Selengil, U., Yıldız, D., & Tan, B. (2023). ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL. Bartın University International Journal of Natural and Applied Sciences, 6(2), 189-205. https://doi.org/10.55930/jonas.1374658
AMA Selengil U, Yıldız D, Tan B. ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL. JONAS. Aralık 2023;6(2):189-205. doi:10.55930/jonas.1374658
Chicago Selengil, Uğur, Derya Yıldız, ve Burcu Tan. “ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL”. Bartın University International Journal of Natural and Applied Sciences 6, sy. 2 (Aralık 2023): 189-205. https://doi.org/10.55930/jonas.1374658.
EndNote Selengil U, Yıldız D, Tan B (01 Aralık 2023) ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL. Bartın University International Journal of Natural and Applied Sciences 6 2 189–205.
IEEE U. Selengil, D. Yıldız, ve B. Tan, “ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL”, JONAS, c. 6, sy. 2, ss. 189–205, 2023, doi: 10.55930/jonas.1374658.
ISNAD Selengil, Uğur vd. “ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL”. Bartın University International Journal of Natural and Applied Sciences 6/2 (Aralık 2023), 189-205. https://doi.org/10.55930/jonas.1374658.
JAMA Selengil U, Yıldız D, Tan B. ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL. JONAS. 2023;6:189–205.
MLA Selengil, Uğur vd. “ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL”. Bartın University International Journal of Natural and Applied Sciences, c. 6, sy. 2, 2023, ss. 189-05, doi:10.55930/jonas.1374658.
Vancouver Selengil U, Yıldız D, Tan B. ADSORPTION OF DEEP RED ON AC PREPARED FROM CHESTNUT SHELL. JONAS. 2023;6(2):189-205.