Research Article
BibTex RIS Cite

Enhancement of the O2 Sensitivity: ZnO, CuO, and ZnO/CuO Hybrid Additives' Effect on Meso-Tetraphenylporphyrin Dye

Year 2022, , 479 - 494, 31.05.2022
https://doi.org/10.18596/jotcsa.1031613

Abstract

Semiconductor metal oxide materials have attracted great interest in gas sensors due to their high sensitivity to many target gases. In this study, an oxygen-sensitive optical chemical sensor was prepared in thin-film form by immobilizing meso-tetraphenylporphyrin (H2TPP) in silicon matrix in the presence of ZnO, CuO and ZnO/CuO hybrid nanoparticles as additives. Characterization of synthesized metal oxide powders was performed using XPS, XRD, SEM, and PL spectroscopy. Emission and decay time measurements of H2TPP-based materials were investigated between the concentration range of 0% and 100% [O2] in thin-film forms. The intensity-based signal drops of the additive-free form of porphyrin dye toward oxygen were calculated as 70%. Whereas, the oxygen sensitivities of H2TPP-based sensor slides were measured as 80%, 75%, and 88% in the presence of ZnO, CuO, and ZnO/CuO hybrid particles, respectively. The usage of porphyrin dye with ZnO/CuO hybrid additive provided higher oxygen sensitivity, larger linear response range, higher Stern-Volmer constant (KSV) value and faster response time compared to the undoped form, ZnO and CuO additive-doped forms of H2TPP. The response and the recovery times of the porphyrin-based sensing slide along with ZnO/CuO hybrid particles have been measured as 10 and 20 s. These results make the H2TPP along with the metal oxide additives promising candidates as oxygen probes.

Supporting Institution

Dokuz Eylul University Scientific Research Funds

Project Number

2018.KB.FEN.039

Thanks

XRD, XPS, and PL measurements were performed in the Center for Fabrication and Applications of Electronic Materials (EMUM)

References

  • 1. Passard G, Dogutan DK, Qiu M, Costentin C, Nocera DG. Oxygen reduction reaction promoted by manganese porphyrins. ACS Catal. 2018;8(9):8671–9.
  • 2. Xu Y, Yang D, Huo S, Ren J, Gao N, Chen Z, et al. Carbon dots and ruthenium doped oxygen sensitive nanofibrous membranes for monitoring the respiration of agricultural products. Polym Test. 2021;93:106957.
  • 3. Canaparo R, Foglietta F, Limongi T, Serpe L. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials (Basel). 2021;14(1):53.
  • 4. Wang G, Chen H. Oxygen consumption for the combustion of sewage sludge: a potential environmental parameter determined by an electrochemical YSZ oxygen sensor. Int J Environ Anal Chem. 2020;1–10.
  • 5. Kuang C, Wang S, Luo M, Cai J, Zhao J. Investigation of CuO-based oxygen carriers modified by three different ores in chemical looping combustion with solid fuels. Renew Energy. 2020;154:937–48.
  • 6. Ongun MZ, Sahin M, Akbal T, Avsar N, Karakas H, Ertekin K, et al. Synthesis, characterization and oxygen sensitivity of cyclophosphazene equipped-iridium (III) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;239:118490.
  • 7. Monash A, Marciano D, Fass R, Dvash Y, Rosen O. Phosphorescent palladium-tetrabenzoporphyrin indicators for immunosensing of small molecules with a novel optical device. Talanta. 2021;224:121927.
  • 8. Xing Y, Wang L, Liu C, Jin X. Effects of fluorine and phenyl substituents on oxygen sensitivity and photostability of cyclometalated platinum (II) complexes. Sensors Actuators B Chem. 2020;304:127378.
  • 9. Ge C, Zhu J, Ouyang A, Lu N, Wang Y, Zhang Q, et al. Near-infrared phosphorescent terpyridine osmium (II) photosensitizer complexes for photodynamic and photooxidation therapy. Inorg Chem Front. 2020;7(20):4020–7.
  • 10. Bolognesi M, Moschetto S, Trapani M, Prescimone F, Ferroni C, Manca G, et al. Noncovalent functionalization of 2D black phosphorus with fluorescent boronic derivatives of pyrene for probing and modulating the interaction with molecular oxygen. ACS Appl Mater Interfaces. 2019;11(25):22637–47.
  • 11. Ongun MZ, Topal SZ, Yel Z, Ertekin K, Önal E, Hirel C. Improvement of the O2 detection: Substituent’s effect on Pd (II) meso-tetraphenylporphyrin probes. Sensors Actuators B Chem. 2019;288:316–24.
  • 12. Önal E, Ay Z, Yel Z, Ertekin K, Gürek AG, Topal SZ, et al. Design of oxygen sensing nanomaterial: synthesis, encapsulation of phenylacetylide substituted Pd (II) and Pt (II) meso-tetraphenylporphyrins into poly (1-trimethylsilyl-1-propyne) nanofibers and influence of silver nanoparticles. RSC Adv. 2016;6(12):9967–77. DOI:
  • 13. Chu C-S, Chuang C-Y. Ratiometric optical fiber dissolved oxygen sensor based on metalloporphyrin and CdSe quantum dots embedded in sol–gel matrix. J Lumin. 2015;167:114–9.
  • 14. Borisov SM, Lehner P, Klimant I. Novel optical trace oxygen sensors based on platinum (II) and palladium (II) complexes with 5, 10, 15, 20-meso-tetrakis-(2, 3, 4, 5, 6-pentafluorphenyl)-porphyrin covalently immobilized on silica-gel particles. Anal Chim Acta. 2011;690(1):108–15.
  • 15. Oige K, Avarmaa T, Suisalu A, Jaaniso R. Effect of long-term aging on oxygen sensitivity of luminescent Pd-tetraphenylporphyrin/PMMA films. Sensors Actuators B Chem. 2005;106(1):424–30.
  • 16. Mueller BJ, Burger T, Borisov SM, Klimant I. High performance optical trace oxygen sensors based on NIR-emitting benzoporphyrins covalently coupled to silicone matrixes. Sensors Actuators B Chem. 2015;216:527–34.
  • 17. Amao Y, Asai K, Okura I. Oxygen sensing based on lifetime of photoexcited triplet state of platinum porphyrin–polystyrene film using time‐resolved spectroscopy. J Porphyr Phthalocyanines. 2000;4(3):292–9.
  • 18. Topal SZ, Ongun MZ, Önal E, Ertekin K, Hirel C. Hyperporphyrin effect on oxygen sensitivity of free meso-tetraphenylporphyrins. Dye Pigment. 2017;144:102–9.
  • 19. Topal SZ, Önal E, Ertekin K, Oter O, Gürek AG, Hirel C. Significant sensitivity and stability enhancement of tetraphenylporphyrin-based optical oxygen sensing material in presence of perfluorochemicals. J Porphyr Phthalocyanines. 2013;17(06n07):431–9.
  • 20. Potyrailo RA, Hieftje GM. Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber. Anal Chim Acta. 1998;370(1):1–8.
  • 21. Arafat MM, Dinan B, Akbar SA, Haseeb A. Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors. 2012;12(6):7207–58.
  • 22. Wang JX, Sun XW, Yang Y, Kyaw KKA, Huang XY, Yin JZ, et al. Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology. 2011;22(32):325704.
  • 23. Jiang T, Du B, Zhang H, Yu D, Sun L, Zhao G, et al. High-performance photoluminescence-based oxygen sensing with Pr-modified ZnO nanofibers. Appl Surf Sci. 2019;483:922–8.
  • 24. Qu X, Yang R, Tong F, Zhao Y, Wang M-H. Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties. Powder Technol. 2018;330:259–65.
  • 25. Ongun MZ. Tuning CO2 sensitivity of HPTS by ZnO and ZnO@ Ag nanoparticles. J Photochem Photobiol A Chem. 2020;400:112664.
  • 26. Yin X-T, Dastan D, Wu F-Y, Li J. Facile synthesis of SnO2/LaFeO3− XNX composite: photocatalytic activity and gas sensing performance. Nanomaterials. 2019;9(8):1163.
  • 27. Paliwal A, Sharma A, Tomar M, Gupta V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors Actuators B Chem. 2017;250:679–85.
  • 28. Castillero P, Roales J, Lopes-Costa T, Sánchez-Valencia JR, Barranco A, González-Elipe AR, et al. Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films. Sensors. 2017;17(1):24.
  • 29. Chethana DM, Thanuja TC, Mahesh HM, Kiruba MS, Jose AS, Barshilia HC, et al. Synthesis, structural, magnetic and NO2 gas sensing property of CuO nanoparticles. Ceram Int. 2021;47(7):10381–7.
  • 30. Priya AK, Sunny A, Karthikeyan B, Sastikumar D. Optical, spectroscopic and fiber optic gas sensing of potassium doped α-Fe2O3 nanostructures. Opt Fiber Technol. 2020;58:102304.
  • 31. Mariammal RN, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Mater Res Bull. 2018;100:420–8.
  • 32. Sanchez-Valencia JR, Alcaire M, Romero-Gómez P, Macias-Montero M, Aparicio FJ, Borras A, et al. Oxygen optical sensing in gas and liquids with nanostructured ZnO thin films based on exciton emission detection. J Phys Chem C. 2014;118(18):9852–9.
  • 33. Jiang Z, Yu X, Zhai S, Hao Y. Ratiometric dissolved oxygen sensors based on ruthenium complex doped with silver nanoparticles. Sensors. 2017;17(3):548.
  • 34. Ozturk O, Oter O, Yildirim S, Subasi E, Ertekin K, Celik E, et al. Tuning oxygen sensitivity of ruthenium complex exploiting silver nanoparticles. J Lumin. 2014;155:191–7.
  • 35. Ongun MZ. Development of Highly Sensitive Metal-Free Tetraphenylporphyrin-Based Optical Oxygen Sensing Materials along with ILs and AgNPs. Celal Bayar Univ J Sci. 2019;15(1):131–8. DOI:
  • 36. Oguzlar S. Development of highly sensitive [Ru (bpy) 3] 2+-Based optical oxygen sensing thin films in the presence with Fe3O4 and Fe3O4@ Ag NPs. Opt Mater (Amst). 2020;101:109772.
  • 37. Yildirim B, Keskin OY, Oguzlar S, Birlik I, Azem FA, Ertekin K. Manipulation of brightness and decay kinetics of LuAG: Ce3+ and YAG: Ce3+ by simple metal oxides in polymeric matrices. Opt Laser Technol. 2021;142:107226.
  • 38. Yang C, Cao X, Wang S, Zhang L, Xiao F, Su X, et al. Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties. Ceram Int. 2015;41(1):1749–56.
  • 39. Ongun MZ, Oter O, Sabancı G, Ertekin K, Celik E. Enhanced stability of ruthenium complex in ionic liquid doped electrospun fibers. Sensors Actuators B Chem. 2013;183:11–9.
  • 40. Acedo-Mendoza AG, Infantes-Molina A, Vargas-Hernández D, Chávez-Sánchez CA, Rodríguez-Castellón E, Tánori-Córdova JC. Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature. Mater Sci Semicond Process. 2020;119:105257.
  • 41. Zhu D, Wang L, Yu W, Xie H. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep. 2018;8(1):1–12. DOI:
  • 42. Wang X, Li S, Xie L, Li X, Lin D, Zhu Z. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceram Int. 2020;46(10):15858–66.
  • 43. Oguzlar S, Ongun MZ, Ertekin K. Investigation of light induced interactions between ZnO nano-particles and red emitting phosphor blends of Eu2+/Dy3+ doped strontium aluminate and Eu2+ doped Ca-α-Sialon. J Lumin. 2021;118236.
  • 44. Aydin I, Ertekin K, Demirci S, Gultekin S, Celik E. Sol-gel synthesized Sr4Al14O25: Eu2+/Dy3+ blue–green phosphorous as oxygen sensing materials. Opt Mater (Amst). 2016;62:285–96.
Year 2022, , 479 - 494, 31.05.2022
https://doi.org/10.18596/jotcsa.1031613

Abstract

Project Number

2018.KB.FEN.039

References

  • 1. Passard G, Dogutan DK, Qiu M, Costentin C, Nocera DG. Oxygen reduction reaction promoted by manganese porphyrins. ACS Catal. 2018;8(9):8671–9.
  • 2. Xu Y, Yang D, Huo S, Ren J, Gao N, Chen Z, et al. Carbon dots and ruthenium doped oxygen sensitive nanofibrous membranes for monitoring the respiration of agricultural products. Polym Test. 2021;93:106957.
  • 3. Canaparo R, Foglietta F, Limongi T, Serpe L. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials (Basel). 2021;14(1):53.
  • 4. Wang G, Chen H. Oxygen consumption for the combustion of sewage sludge: a potential environmental parameter determined by an electrochemical YSZ oxygen sensor. Int J Environ Anal Chem. 2020;1–10.
  • 5. Kuang C, Wang S, Luo M, Cai J, Zhao J. Investigation of CuO-based oxygen carriers modified by three different ores in chemical looping combustion with solid fuels. Renew Energy. 2020;154:937–48.
  • 6. Ongun MZ, Sahin M, Akbal T, Avsar N, Karakas H, Ertekin K, et al. Synthesis, characterization and oxygen sensitivity of cyclophosphazene equipped-iridium (III) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;239:118490.
  • 7. Monash A, Marciano D, Fass R, Dvash Y, Rosen O. Phosphorescent palladium-tetrabenzoporphyrin indicators for immunosensing of small molecules with a novel optical device. Talanta. 2021;224:121927.
  • 8. Xing Y, Wang L, Liu C, Jin X. Effects of fluorine and phenyl substituents on oxygen sensitivity and photostability of cyclometalated platinum (II) complexes. Sensors Actuators B Chem. 2020;304:127378.
  • 9. Ge C, Zhu J, Ouyang A, Lu N, Wang Y, Zhang Q, et al. Near-infrared phosphorescent terpyridine osmium (II) photosensitizer complexes for photodynamic and photooxidation therapy. Inorg Chem Front. 2020;7(20):4020–7.
  • 10. Bolognesi M, Moschetto S, Trapani M, Prescimone F, Ferroni C, Manca G, et al. Noncovalent functionalization of 2D black phosphorus with fluorescent boronic derivatives of pyrene for probing and modulating the interaction with molecular oxygen. ACS Appl Mater Interfaces. 2019;11(25):22637–47.
  • 11. Ongun MZ, Topal SZ, Yel Z, Ertekin K, Önal E, Hirel C. Improvement of the O2 detection: Substituent’s effect on Pd (II) meso-tetraphenylporphyrin probes. Sensors Actuators B Chem. 2019;288:316–24.
  • 12. Önal E, Ay Z, Yel Z, Ertekin K, Gürek AG, Topal SZ, et al. Design of oxygen sensing nanomaterial: synthesis, encapsulation of phenylacetylide substituted Pd (II) and Pt (II) meso-tetraphenylporphyrins into poly (1-trimethylsilyl-1-propyne) nanofibers and influence of silver nanoparticles. RSC Adv. 2016;6(12):9967–77. DOI:
  • 13. Chu C-S, Chuang C-Y. Ratiometric optical fiber dissolved oxygen sensor based on metalloporphyrin and CdSe quantum dots embedded in sol–gel matrix. J Lumin. 2015;167:114–9.
  • 14. Borisov SM, Lehner P, Klimant I. Novel optical trace oxygen sensors based on platinum (II) and palladium (II) complexes with 5, 10, 15, 20-meso-tetrakis-(2, 3, 4, 5, 6-pentafluorphenyl)-porphyrin covalently immobilized on silica-gel particles. Anal Chim Acta. 2011;690(1):108–15.
  • 15. Oige K, Avarmaa T, Suisalu A, Jaaniso R. Effect of long-term aging on oxygen sensitivity of luminescent Pd-tetraphenylporphyrin/PMMA films. Sensors Actuators B Chem. 2005;106(1):424–30.
  • 16. Mueller BJ, Burger T, Borisov SM, Klimant I. High performance optical trace oxygen sensors based on NIR-emitting benzoporphyrins covalently coupled to silicone matrixes. Sensors Actuators B Chem. 2015;216:527–34.
  • 17. Amao Y, Asai K, Okura I. Oxygen sensing based on lifetime of photoexcited triplet state of platinum porphyrin–polystyrene film using time‐resolved spectroscopy. J Porphyr Phthalocyanines. 2000;4(3):292–9.
  • 18. Topal SZ, Ongun MZ, Önal E, Ertekin K, Hirel C. Hyperporphyrin effect on oxygen sensitivity of free meso-tetraphenylporphyrins. Dye Pigment. 2017;144:102–9.
  • 19. Topal SZ, Önal E, Ertekin K, Oter O, Gürek AG, Hirel C. Significant sensitivity and stability enhancement of tetraphenylporphyrin-based optical oxygen sensing material in presence of perfluorochemicals. J Porphyr Phthalocyanines. 2013;17(06n07):431–9.
  • 20. Potyrailo RA, Hieftje GM. Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber. Anal Chim Acta. 1998;370(1):1–8.
  • 21. Arafat MM, Dinan B, Akbar SA, Haseeb A. Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors. 2012;12(6):7207–58.
  • 22. Wang JX, Sun XW, Yang Y, Kyaw KKA, Huang XY, Yin JZ, et al. Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology. 2011;22(32):325704.
  • 23. Jiang T, Du B, Zhang H, Yu D, Sun L, Zhao G, et al. High-performance photoluminescence-based oxygen sensing with Pr-modified ZnO nanofibers. Appl Surf Sci. 2019;483:922–8.
  • 24. Qu X, Yang R, Tong F, Zhao Y, Wang M-H. Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties. Powder Technol. 2018;330:259–65.
  • 25. Ongun MZ. Tuning CO2 sensitivity of HPTS by ZnO and ZnO@ Ag nanoparticles. J Photochem Photobiol A Chem. 2020;400:112664.
  • 26. Yin X-T, Dastan D, Wu F-Y, Li J. Facile synthesis of SnO2/LaFeO3− XNX composite: photocatalytic activity and gas sensing performance. Nanomaterials. 2019;9(8):1163.
  • 27. Paliwal A, Sharma A, Tomar M, Gupta V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors Actuators B Chem. 2017;250:679–85.
  • 28. Castillero P, Roales J, Lopes-Costa T, Sánchez-Valencia JR, Barranco A, González-Elipe AR, et al. Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films. Sensors. 2017;17(1):24.
  • 29. Chethana DM, Thanuja TC, Mahesh HM, Kiruba MS, Jose AS, Barshilia HC, et al. Synthesis, structural, magnetic and NO2 gas sensing property of CuO nanoparticles. Ceram Int. 2021;47(7):10381–7.
  • 30. Priya AK, Sunny A, Karthikeyan B, Sastikumar D. Optical, spectroscopic and fiber optic gas sensing of potassium doped α-Fe2O3 nanostructures. Opt Fiber Technol. 2020;58:102304.
  • 31. Mariammal RN, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Mater Res Bull. 2018;100:420–8.
  • 32. Sanchez-Valencia JR, Alcaire M, Romero-Gómez P, Macias-Montero M, Aparicio FJ, Borras A, et al. Oxygen optical sensing in gas and liquids with nanostructured ZnO thin films based on exciton emission detection. J Phys Chem C. 2014;118(18):9852–9.
  • 33. Jiang Z, Yu X, Zhai S, Hao Y. Ratiometric dissolved oxygen sensors based on ruthenium complex doped with silver nanoparticles. Sensors. 2017;17(3):548.
  • 34. Ozturk O, Oter O, Yildirim S, Subasi E, Ertekin K, Celik E, et al. Tuning oxygen sensitivity of ruthenium complex exploiting silver nanoparticles. J Lumin. 2014;155:191–7.
  • 35. Ongun MZ. Development of Highly Sensitive Metal-Free Tetraphenylporphyrin-Based Optical Oxygen Sensing Materials along with ILs and AgNPs. Celal Bayar Univ J Sci. 2019;15(1):131–8. DOI:
  • 36. Oguzlar S. Development of highly sensitive [Ru (bpy) 3] 2+-Based optical oxygen sensing thin films in the presence with Fe3O4 and Fe3O4@ Ag NPs. Opt Mater (Amst). 2020;101:109772.
  • 37. Yildirim B, Keskin OY, Oguzlar S, Birlik I, Azem FA, Ertekin K. Manipulation of brightness and decay kinetics of LuAG: Ce3+ and YAG: Ce3+ by simple metal oxides in polymeric matrices. Opt Laser Technol. 2021;142:107226.
  • 38. Yang C, Cao X, Wang S, Zhang L, Xiao F, Su X, et al. Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties. Ceram Int. 2015;41(1):1749–56.
  • 39. Ongun MZ, Oter O, Sabancı G, Ertekin K, Celik E. Enhanced stability of ruthenium complex in ionic liquid doped electrospun fibers. Sensors Actuators B Chem. 2013;183:11–9.
  • 40. Acedo-Mendoza AG, Infantes-Molina A, Vargas-Hernández D, Chávez-Sánchez CA, Rodríguez-Castellón E, Tánori-Córdova JC. Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature. Mater Sci Semicond Process. 2020;119:105257.
  • 41. Zhu D, Wang L, Yu W, Xie H. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep. 2018;8(1):1–12. DOI:
  • 42. Wang X, Li S, Xie L, Li X, Lin D, Zhu Z. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceram Int. 2020;46(10):15858–66.
  • 43. Oguzlar S, Ongun MZ, Ertekin K. Investigation of light induced interactions between ZnO nano-particles and red emitting phosphor blends of Eu2+/Dy3+ doped strontium aluminate and Eu2+ doped Ca-α-Sialon. J Lumin. 2021;118236.
  • 44. Aydin I, Ertekin K, Demirci S, Gultekin S, Celik E. Sol-gel synthesized Sr4Al14O25: Eu2+/Dy3+ blue–green phosphorous as oxygen sensing materials. Opt Mater (Amst). 2016;62:285–96.
There are 44 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Merve Zeyrek Ongun 0000-0002-2874-8024

Project Number 2018.KB.FEN.039
Publication Date May 31, 2022
Submission Date December 2, 2021
Acceptance Date March 10, 2022
Published in Issue Year 2022

Cite

Vancouver Zeyrek Ongun M. Enhancement of the O2 Sensitivity: ZnO, CuO, and ZnO/CuO Hybrid Additives’ Effect on Meso-Tetraphenylporphyrin Dye. JOTCSA. 2022;9(2):479-94.