Physical and Spectroscopic Characterization of the Microcrystalline Cellulose Derivatives from Corn Cob and Daniella Oliveri Wastes
Year 2023,
, 31 - 38, 28.02.2023
Mariam Temitope Baker
,
Olubunmi Stephen Oguntoye
Abstract
Cellulose was extracted from wood dust waste samples of Daniella oliveri and corn cobs by acetic acid and alkaline pretreatment methods, while microcrystalline cellulose (MCC) derivative was produced by acid hydrolysis in 2 M HCl. The samples were tested for pH, moisture content, swelling capacities and ash contents. The data obtained were compared with those of commercial MCCs found in the literature. The functional groups in the microcrystalline cellulose derivatives was confirmed by the Fourier transform infrared (FTIR) spectroscopic method with characteristic absorption bands of;–OH stretching at 3416 cm-1; C-H stretching at 2918 cm-1; -OH bending at 1377 cm-1; 1159 cm-1; and C-O-C pyranose ring skeletal vibrations at 1026-1033 cm-1. The crystallinity absorption bands appeared at 1436 and 850 cm-1. The characteristic morphological features were established by scanning electron microscopy (SEM). Furthermore, the crystallinity of the microcrystalline cellulose was further confirmed using the X-ray powder diffraction (X-RD) technique, which showed three main reflections at 2θ=14.70°, 22.09°, and 34.24°.These results supported that microcrystalline cellulose derivative as cellulose I type and the acid pretreatment did not affect the structure of the MCC. The crystallinity indices were 69.3 and 73.2%, respectively. Daniella Oliveri and corn cob microcrystalline cellulose are, therefore, potential materials for further processing.
Supporting Institution
Council for Scientific and Industrial Research-Institute of Minerals and Materials Technology (CSIR-IMMT) Bhubaneswar,751013, Odisha India
Project Number
MoU(UNILORIN/CSIR-IMMT)
Thanks
Dr R. Boopathy and Dr T. Das of the Department of Environment and Sustainability, CSIR-IMMT Bhubaneswar, 751013, Odisha, India.
References
- 1. Bian B, Hu X, Zhang S, Lv C, Yang Z, Yang W, et al. Pilot-scale composting of typical multiple agricultural wastes: Parameter optimization and mechanisms. Bioresour Technol [Internet]. 2019 Sep 1 [cited 2021 Apr 9];287.
- 2. Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A. Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol [Internet]. 2020;155:730–9.
- 3. Granström M. Cellulose Derivatives: Synthesis, Properties and Applications. 2009. ISBN: 978-952-10-5485-3.
- 4. Kumar V, Pathak P, Bhardwaj NK. Waste paper: An underutilized but promising source for nanocellulose mining. Waste Manag [Internet]. 2020;102:281–303.
- 5. Czaja W, Krystynowicz A, Bielecki S, Brown RM. Microbial cellulose - The natural power to heal wounds. Biomaterials. 2006;27(2):145–51.
- 6. Kostag M, Jedvert K, Achtel C, Heinze T, El Seoud OA. Recent advances in solvents for the dissolution, shaping and derivatization of cellulose: Quaternary ammonium electrolytes and their solutions in water and molecular solvents. Molecules. 2018;23(3). Available from: <URL>.
- 7. Kunusa WR, Isa I, Laliyo LAR, Iyabu H. FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corncorbs in Alkaline Treatment. J Phys Conf Ser. 2018;1028(1).
- 8. Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr Polym. 2018 Mar 15;184:164–70.
- 9. Garba ZN, Lawan I, Zhou W, Zhang M, Wang L, Yuan Z. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals – A review. Sci Total Environ [Internet]. 2020;717(Mcc):135070.
- 10. Knoema. Search, Discover, Catalog and Access Your Data Seamlessly. October 29, 2022 (Opens in new tab).
- 11. Cao Q, Xie KC, Bao WR, Shen SG. Pyrolytic behavior of waste corn cob. Bioresour Technol. 2004;94(1):83–9.
- 12. Ravikumar C, Senthil Kumar P, Subhashni SK, Tejaswini P V., Varshini V. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values. Sustain Mater Technol [Internet]. 2017;11:19–27.
- 13. Zhang Q, Zhang D, Xu H, Lu W, Ren X, Cai H, et al. Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes [Internet]. 2020 [cited 2021 Apr 9].
- 14. Wang S, Gao W, Li H, Xiao LP, Sun RC, Song G. Selective fragmentation of biorefinery corncob lignin into p-hydroxycinnamic esters with a supported zinc molybdate catalyst. ChemSusChem. 2018;11(13):2114–23.
- 15. Duan C, Meng X, Liu C, Lu W, Liu J, Dai L, et al. Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation. Carbohydr Polym [Internet]. 2019;222:115042.
- 16. agritrop-eprint-317983. Useful Tropical Plants. July 20, 2022 (opens in new tab).
- 17. Shackleton CM, Pasquini MW, Drescher AW. African indigenous vegetables in urban agriculture. African Indigenous Vegetables in Urban Agriculture. 2009. 1–298 p. ISBN: 9781136574993 .
- 18. Ahmadu AA, Zezi AU, Yaro AH. Anti-diarrheal activity of the leaf extracts of Daniellia Oliveri hutch and Dalz (Fabaceae) and ficus sycomorus Miq (Moraceae). African J Tradit Complement Altern Med. 2007;4(4):524–8.
- 19. Burkill HM. The useful plants of west tropical Africa, Vols. 1-3. 1995;(2. ed.), ISBN: 094764301x.
- 20. Dinku W, Isaksson J, Rylandsholm FG, Bouř P, Brichtová E, Choi SU, et al. Anti-proliferative activity of a novel tricyclic triterpenoid acid from Commiphora africana resin against four human cancer cell lines. Appl Biol Chem [Internet]. 2020;63(1).
- 21. Alagbe, J.O., Sharma, R., Eunice AbidemiOjo., Shittu, M.D and Bello KA. Proximate , Mineral and Phytochemical Analysis of Piliostigma Thonningii Stem Bark and Roots. Int J Biol , Phys Chem Stud ( JBPCS ). 2020;(c):1–7.
- 22. Adeyanju O, Olatoyinbo FA. Toxicological Studies and Utilization of DAN. Gum as Binder in Drug Formulation. J Pharm Appl Chem. 2018;4(3):169–74.
- 23. Ajala, O. O., Awotedu, O.O. and Ogunbamowo PO. Comparative assessment of briquette produced from selected wood specıes. J Sustain Environ Manag [Internet]. 2016;8(ISSN: 2141-0267):1–12.
- 24. Arowona MT, Olatunji GA, Saliu OD, Adeniyi OR, Atolani O, Adisa MJ. Thermally stable rice husk microcrystalline cellulose as adsorbent in PTLC plates. J Turkish Chem Soc Sect A Chem. 2018;5(3):1177–84.
- 25. Kharismi RRAY, Sutriyo, Suryadi H. Preparation and characterization of microcrystalline cellulose produced from betung bamboo (dendrocalamus asper) through acid hydrolysis. J Young Pharm. 2018;1 (2):s79--s83.
- 26. Nwachukwu N, Ofoefule SI. Effect of drying methods on the powder and compaction properties of microcrystalline cellulose derived from gossypium herbaceum. Brazilian J Pharm Sci. 2020;56:1–17.
- 27. Kharismi RRAY, Sutriyo, Suryadi H. Preparation and characterization of microcrystalline cellulose produced from betung bamboo (dendrocalamus asper) through acid hydrolysis. J Young Pharm. 2018;10(2):s79–83.
- 28. Krivokapić J, Ivanović J, Djuriš J, Medarević D, Potpara Z, Maksimović Z, et al. Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press. Saudi Pharm J. 2020;28(6):710–8.
- 29. Geng H. A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees. Carbohydr Polym [Internet]. 2018;186:208–16.
- 30. Viera-Herrera C, Santamaría-Aguirre J, Vizuete K, Debut A, Whitehead DC, Alexis F. Microcrystalline cellulose extracted from native plants as an excipient for solid dosage formulations in drug delivery. Nanomaterials. 2020;10(5):1–12.
- 31. Liu C-F, Sun R-C, Zhang A-P, Qin M-H, Ren J-L, Wang X-A. Preparation and Characterization of Phthalated Cellulose Derivatives in Room-Temperature Ionic Liquid without Catalysts. 2007;
- 32. Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K. Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Isolated from Esparto Grass Using Different Delignification Approaches. J Polym Environ [Internet]. 2021;29(1):130–42.
- 33. Szymanska-Chargot M, Chylinska M, Gdula K, Koziol A, Zdunek A. Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers (Basel) [Internet]. 2017;9(10).
- 34. Hachaichi A, Kouini B, Kian LK, Asim M, Jawaid M. Extraction and Characterization of Microcrystalline Cellulose from Date Palm Fibers using Successive Chemical Treatments. J Polym Environ [Internet]. 2021;(0123456789).
- 35. Usmani Z, Sharma M, Gupta P, Karpichev Y, Gathergood N, Liang James Hawkins Michael E Ries Peter J Hine YE, et al. A study on the microstructural development of gel polymer electrolytes and different imidazolium-based ionic liquids for dye-sensitized solar cells. Carbohydr Polym [Internet]. 1st ed. 2017 Mar 15 [cited 2021 Mar 29];10(1):1–12.
- 36. Hina S, Zhang Y, Wang H. Role of ionic liquids in dissolution and regeneration of cellulose. Rev Adv Mater Sci. 2015;40(3):215–26.
- 37. Cheng W, He J, Wu Y, Song C, Xie S, Huang Y, et al. Preparation and characterization of oxidized regenerated cellulose film for hemostasis and the effect of blood on its surface. Cellulose. 2013;20(5):2547–58.
- 38. Nascimento DM d., Almeida JS, Vale M do S, Leitão RC, Muniz CR, Figueirêdo MCB d., et al. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Ind Crops Prod [Internet]. 2016;93:66–75.
- 39. Rahman MS, H. Mondal MI, Yeasmin MS, Sayeed MA, Hossain MA, Ahmed MB. Conversion of Lignocellulosic Corn Agro-Waste into Cellulose Derivative and Its Potential Application as Pharmaceutical Excipient. Processes [Internet]. 2020 Jun 19 [cited 2021 Apr 9];8(6):711.
- 40. Hu F, Lin N, Chang PR, Huang J. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym [Internet]. 2015;129:208–15.
- 41. Mahmoudian S, Wahit MU, Ismail AF, Balakrishnan H, Imran M. Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate. J Mater Sci. 2015;50(3):1228–36.
- 42. W. R. Kunusa*, I. Isa LAL& HI. FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corncorbs in Alkaline Treatment. J Phys Conf Ser 1028. 2018 Mar 15;1(1):258–66.
- 43. Liu Y, Liu A, Ibrahim SA, Yang H, Huang W. Isolation and characterization of microcrystalline cellulose from pomelo peel. Int J Biol Macromol [Internet]. 2018;111:717–21.
Year 2023,
, 31 - 38, 28.02.2023
Mariam Temitope Baker
,
Olubunmi Stephen Oguntoye
Project Number
MoU(UNILORIN/CSIR-IMMT)
References
- 1. Bian B, Hu X, Zhang S, Lv C, Yang Z, Yang W, et al. Pilot-scale composting of typical multiple agricultural wastes: Parameter optimization and mechanisms. Bioresour Technol [Internet]. 2019 Sep 1 [cited 2021 Apr 9];287.
- 2. Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A. Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol [Internet]. 2020;155:730–9.
- 3. Granström M. Cellulose Derivatives: Synthesis, Properties and Applications. 2009. ISBN: 978-952-10-5485-3.
- 4. Kumar V, Pathak P, Bhardwaj NK. Waste paper: An underutilized but promising source for nanocellulose mining. Waste Manag [Internet]. 2020;102:281–303.
- 5. Czaja W, Krystynowicz A, Bielecki S, Brown RM. Microbial cellulose - The natural power to heal wounds. Biomaterials. 2006;27(2):145–51.
- 6. Kostag M, Jedvert K, Achtel C, Heinze T, El Seoud OA. Recent advances in solvents for the dissolution, shaping and derivatization of cellulose: Quaternary ammonium electrolytes and their solutions in water and molecular solvents. Molecules. 2018;23(3). Available from: <URL>.
- 7. Kunusa WR, Isa I, Laliyo LAR, Iyabu H. FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corncorbs in Alkaline Treatment. J Phys Conf Ser. 2018;1028(1).
- 8. Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr Polym. 2018 Mar 15;184:164–70.
- 9. Garba ZN, Lawan I, Zhou W, Zhang M, Wang L, Yuan Z. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals – A review. Sci Total Environ [Internet]. 2020;717(Mcc):135070.
- 10. Knoema. Search, Discover, Catalog and Access Your Data Seamlessly. October 29, 2022 (Opens in new tab).
- 11. Cao Q, Xie KC, Bao WR, Shen SG. Pyrolytic behavior of waste corn cob. Bioresour Technol. 2004;94(1):83–9.
- 12. Ravikumar C, Senthil Kumar P, Subhashni SK, Tejaswini P V., Varshini V. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values. Sustain Mater Technol [Internet]. 2017;11:19–27.
- 13. Zhang Q, Zhang D, Xu H, Lu W, Ren X, Cai H, et al. Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes [Internet]. 2020 [cited 2021 Apr 9].
- 14. Wang S, Gao W, Li H, Xiao LP, Sun RC, Song G. Selective fragmentation of biorefinery corncob lignin into p-hydroxycinnamic esters with a supported zinc molybdate catalyst. ChemSusChem. 2018;11(13):2114–23.
- 15. Duan C, Meng X, Liu C, Lu W, Liu J, Dai L, et al. Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation. Carbohydr Polym [Internet]. 2019;222:115042.
- 16. agritrop-eprint-317983. Useful Tropical Plants. July 20, 2022 (opens in new tab).
- 17. Shackleton CM, Pasquini MW, Drescher AW. African indigenous vegetables in urban agriculture. African Indigenous Vegetables in Urban Agriculture. 2009. 1–298 p. ISBN: 9781136574993 .
- 18. Ahmadu AA, Zezi AU, Yaro AH. Anti-diarrheal activity of the leaf extracts of Daniellia Oliveri hutch and Dalz (Fabaceae) and ficus sycomorus Miq (Moraceae). African J Tradit Complement Altern Med. 2007;4(4):524–8.
- 19. Burkill HM. The useful plants of west tropical Africa, Vols. 1-3. 1995;(2. ed.), ISBN: 094764301x.
- 20. Dinku W, Isaksson J, Rylandsholm FG, Bouř P, Brichtová E, Choi SU, et al. Anti-proliferative activity of a novel tricyclic triterpenoid acid from Commiphora africana resin against four human cancer cell lines. Appl Biol Chem [Internet]. 2020;63(1).
- 21. Alagbe, J.O., Sharma, R., Eunice AbidemiOjo., Shittu, M.D and Bello KA. Proximate , Mineral and Phytochemical Analysis of Piliostigma Thonningii Stem Bark and Roots. Int J Biol , Phys Chem Stud ( JBPCS ). 2020;(c):1–7.
- 22. Adeyanju O, Olatoyinbo FA. Toxicological Studies and Utilization of DAN. Gum as Binder in Drug Formulation. J Pharm Appl Chem. 2018;4(3):169–74.
- 23. Ajala, O. O., Awotedu, O.O. and Ogunbamowo PO. Comparative assessment of briquette produced from selected wood specıes. J Sustain Environ Manag [Internet]. 2016;8(ISSN: 2141-0267):1–12.
- 24. Arowona MT, Olatunji GA, Saliu OD, Adeniyi OR, Atolani O, Adisa MJ. Thermally stable rice husk microcrystalline cellulose as adsorbent in PTLC plates. J Turkish Chem Soc Sect A Chem. 2018;5(3):1177–84.
- 25. Kharismi RRAY, Sutriyo, Suryadi H. Preparation and characterization of microcrystalline cellulose produced from betung bamboo (dendrocalamus asper) through acid hydrolysis. J Young Pharm. 2018;1 (2):s79--s83.
- 26. Nwachukwu N, Ofoefule SI. Effect of drying methods on the powder and compaction properties of microcrystalline cellulose derived from gossypium herbaceum. Brazilian J Pharm Sci. 2020;56:1–17.
- 27. Kharismi RRAY, Sutriyo, Suryadi H. Preparation and characterization of microcrystalline cellulose produced from betung bamboo (dendrocalamus asper) through acid hydrolysis. J Young Pharm. 2018;10(2):s79–83.
- 28. Krivokapić J, Ivanović J, Djuriš J, Medarević D, Potpara Z, Maksimović Z, et al. Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press. Saudi Pharm J. 2020;28(6):710–8.
- 29. Geng H. A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees. Carbohydr Polym [Internet]. 2018;186:208–16.
- 30. Viera-Herrera C, Santamaría-Aguirre J, Vizuete K, Debut A, Whitehead DC, Alexis F. Microcrystalline cellulose extracted from native plants as an excipient for solid dosage formulations in drug delivery. Nanomaterials. 2020;10(5):1–12.
- 31. Liu C-F, Sun R-C, Zhang A-P, Qin M-H, Ren J-L, Wang X-A. Preparation and Characterization of Phthalated Cellulose Derivatives in Room-Temperature Ionic Liquid without Catalysts. 2007;
- 32. Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K. Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Isolated from Esparto Grass Using Different Delignification Approaches. J Polym Environ [Internet]. 2021;29(1):130–42.
- 33. Szymanska-Chargot M, Chylinska M, Gdula K, Koziol A, Zdunek A. Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers (Basel) [Internet]. 2017;9(10).
- 34. Hachaichi A, Kouini B, Kian LK, Asim M, Jawaid M. Extraction and Characterization of Microcrystalline Cellulose from Date Palm Fibers using Successive Chemical Treatments. J Polym Environ [Internet]. 2021;(0123456789).
- 35. Usmani Z, Sharma M, Gupta P, Karpichev Y, Gathergood N, Liang James Hawkins Michael E Ries Peter J Hine YE, et al. A study on the microstructural development of gel polymer electrolytes and different imidazolium-based ionic liquids for dye-sensitized solar cells. Carbohydr Polym [Internet]. 1st ed. 2017 Mar 15 [cited 2021 Mar 29];10(1):1–12.
- 36. Hina S, Zhang Y, Wang H. Role of ionic liquids in dissolution and regeneration of cellulose. Rev Adv Mater Sci. 2015;40(3):215–26.
- 37. Cheng W, He J, Wu Y, Song C, Xie S, Huang Y, et al. Preparation and characterization of oxidized regenerated cellulose film for hemostasis and the effect of blood on its surface. Cellulose. 2013;20(5):2547–58.
- 38. Nascimento DM d., Almeida JS, Vale M do S, Leitão RC, Muniz CR, Figueirêdo MCB d., et al. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Ind Crops Prod [Internet]. 2016;93:66–75.
- 39. Rahman MS, H. Mondal MI, Yeasmin MS, Sayeed MA, Hossain MA, Ahmed MB. Conversion of Lignocellulosic Corn Agro-Waste into Cellulose Derivative and Its Potential Application as Pharmaceutical Excipient. Processes [Internet]. 2020 Jun 19 [cited 2021 Apr 9];8(6):711.
- 40. Hu F, Lin N, Chang PR, Huang J. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym [Internet]. 2015;129:208–15.
- 41. Mahmoudian S, Wahit MU, Ismail AF, Balakrishnan H, Imran M. Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate. J Mater Sci. 2015;50(3):1228–36.
- 42. W. R. Kunusa*, I. Isa LAL& HI. FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corncorbs in Alkaline Treatment. J Phys Conf Ser 1028. 2018 Mar 15;1(1):258–66.
- 43. Liu Y, Liu A, Ibrahim SA, Yang H, Huang W. Isolation and characterization of microcrystalline cellulose from pomelo peel. Int J Biol Macromol [Internet]. 2018;111:717–21.