Research Article
BibTex RIS Cite
Year 2023, , 227 - 240, 28.02.2023
https://doi.org/10.18596/jotcsa.1182942

Abstract

References

  • 1. Yoo E-H, Lee S-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors [Internet]. 2010 May 4;10(5):4558–76. Available from: http://www.mdpi.com/1424-8220/10/5/4558
  • 2. Khor SM, Choi J, Won P, Ko SH. Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes. Nanomaterials [Internet]. 2022 Jan 10;12(2):221. Available from: https://www.mdpi.com/2079-4991/12/2/221
  • 3. Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors [Internet]. 2022 Feb 22;12(3):137. Available from: https://www.mdpi.com/2079-6374/12/3/137
  • 4. Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors [Internet]. 2021 Jul 8;21(14):4672. Available from: https://www.mdpi.com/1424-8220/21/14/4672
  • 5. Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev [Internet]. 2017 Jun 27;6(3):301–29. Available from: https://www.degruyter.com/document/doi/10.1515/ntrev-2016-0014/html
  • 6. Barbee B, Muchharla B, Adedeji A, Karoui A, Kumar Sadasivuni K, Sha MS, et al. Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection. Sci Rep [Internet]. 2022 May 7;12(1):7507. Available from: https://www.nature.com/articles/s41598-022-11563-4
  • 7. Pourbeyram S, Mehdizadeh K. Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles. J Food Drug Anal [Internet]. 2016 Oct 1;24(4):894–902. Available from: https://linkinghub.elsevier.com/retrieve/pii/S102194981630031X
  • 8. Yazar S, Kurtulbaş E, Ortaboy S, Atun G, Şahin S. Screening of the antioxidant properties of olive (Olea europaea) leaf extract by titanium based reduced graphene oxide electrode. Korean J Chem Eng [Internet]. 2019 Jul 25;36(7):1184–92. Available from: http://link.springer.com/10.1007/s11814-019-0288-9
  • 9. Kurtulbaş E, Yazar S, Ortaboy S, Atun G, Şahin S. Evaluation of the phenolic antioxidants of olive (Olea europaea) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis. Chem Eng Commun [Internet]. 2020 Jul 2;207(7):920–32. Available from: https://www.tandfonline.com/doi/full/10.1080/00986445.2019.1630397
  • 10. Białas K, Moschou D, Marken F, Estrela P. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Microchim Acta [Internet]. 2022 Apr 2;189(4):172. Available from: https://link.springer.com/10.1007/s00604-022-05252-2
  • 11. Liu X, Cui S, Sun Z, Du P. Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim Acta [Internet]. 2015 Apr 1;160:202–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013468615001437
  • 12. Arvas MB, Gencten M, Sahin Y. One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics (Kiel) [Internet]. 2021 May 5;27(5):2241–56. Available from: https://link.springer.com/10.1007/s11581-021-03986-2
  • 13. Mansuroglu A, Arvas MB, Kiraz C, Sayhan B, Akgumus A, Gencten M, et al. N-Doped Graphene Oxide as Additive for Fumed Silica Based Gel Electrolyte of Valve Regulated Lead Acid Batteries. J Electrochem Soc [Internet]. 2021 Jun 1;168(6):060512. Available from: https://iopscience.iop.org/article/10.1149/1945-7111/ac0555
  • 14. Jiang D, Liu Q, Wang K, Qian J, Dong X, Yang Z, et al. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens Bioelectron [Internet]. 2014 Apr 15;54:273–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956566313007835
  • 15. Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y, et al. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon N Y [Internet]. 2020 Jan 1;156:506–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0008622319310115
  • 16. Anand VK, Bhatt K, Kumar S, Archana B, Sharma S, Singh K, et al. Sensitive and Enzyme-Free Glucose Sensor Based on Copper Nanowires/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink. Int J Nanosci [Internet]. 2021 Apr 10 [cited 2023 Feb 26];20(02):2150020. Available from: https://www.worldscientific.com/doi/abs/10.1142/S0219581X21500204
  • 17. Phetsang S, Kidkhunthod P, Chanlek N, Jakmunee J, Mungkornasawakul P, Ounnunkad K. Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application. Sci Rep [Internet]. 2021 Apr 29;11(1):9302. Available from: https://www.nature.com/articles/s41598-021-88747-x
  • 18. Yazar S, Arvas MB, Sahin Y. An ultrahigh‐energy density and wide potential window aqueous electrolyte supercapacitor built by polypyrrole/aniline 2‐sulfonic acid modified carbon felt electrode. Int J Energy Res [Internet]. 2022 May 9;46(6):8042–60. Available from: https://onlinelibrary.wiley.com/doi/10.1002/er.7706
  • 19. Arvas MB, Yazar S, Sahin Y. Electrochemical synthesis and characterization of self-doped aniline 2-sulfonic acid-modified flexible electrode with high areal capacitance and rate capability for supercapacitors. Synth Met [Internet]. 2022 Apr 1;285:117017. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037967792200011X
  • 20. Sokolova MP, Bobrova N V., Dmitriev IY, Vlasov P V., Smirnov NN, Elyashevich GK, et al. Anticorrosion activity of aniline–aniline-2-sulfonic acid copolymers on the steel surface. Russ J Appl Chem [Internet]. 2016 Mar 15;89(3):432–8. Available from: http://link.springer.com/10.1134/S1070427216030137
  • 21. Marioli JM, Kuwana T. Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim Acta [Internet]. 1992 Jun;37(7):1187–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/001346869285055P
  • 22. Li Z, Chen Y, Xin Y, Zhang Z. Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Sci Rep [Internet]. 2015 Nov 2;5(1):16115. Available from: https://www.nature.com/articles/srep16115
  • 23. Wang G, Ding Y, Wang F, Li X, Li C. Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility. J Colloid Interface Sci [Internet]. 2008 Jan 1;317(1):199–205. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979707013471
  • 24. Şahin Y, Pekmez K, Yıldız A. Electropolymerization and in situ sulfonation of aniline in water–acetonitrile mixture containing FSO3H. Synth Met [Internet]. 2002 Nov;131(1–3):7–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037967790200125X
  • 25. Şahin Y, Pekmez K, Yıldız A. Electrochemical preparation of soluble sulfonated polymers and aniline copolymers of aniline sulfonic acids in dimethylsulfoxide. J Appl Polym Sci [Internet]. 2003 Nov 21;90(8):2163–9. Available from: https://onlinelibrary.wiley.com/doi/10.1002/app.12858
  • 26. Sudha V, Murugadoss G, Thangamuthu R. Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Sci Rep [Internet]. 2021 Feb 9;11(1):3413. Available from: https://www.nature.com/articles/s41598-021-82741-z
  • 27. Abunahla H, Mohammad B, Alazzam A, Jaoude MA, Al-Qutayri M, Abdul Hadi S, et al. MOMSense: Metal-Oxide-Metal Elementary Glucose Sensor. Sci Rep [Internet]. 2019 Apr 2;9(1):5524. Available from: https://www.nature.com/articles/s41598-019-41892-w
  • 28. Strakosas X, Selberg J, Pansodtee P, Yonas N, Manapongpun P, Teodorescu M, et al. A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci Rep [Internet]. 2019 Jul 26;9(1):10844. Available from: https://www.nature.com/articles/s41598-019-46302-9
  • 29. Jayarathne RMHH, Pitigala PKDDP, Perera VP. Electronic and structural properties of Cu2O polycrystalline thin films grown on adhesive copper tape. Proc Tech Sess [Internet]. 2019 [cited 2023 Feb 26];35:31–8. Available from: https://drive.google.com/file/d/1fzP1Z9_PAk263rWMP_V7PUetK_NsfnTy/view
  • 30. He D, Wang G, Liu G, Suo H, Zhao C. Construction of leaf-like CuO–Cu 2 O nanocomposites on copper foam for high-performance supercapacitors. Dalt Trans [Internet]. 2017;46(10):3318–24. Available from: http://xlink.rsc.org/?DOI=C7DT00287D
  • 31. Volanti DP, Keyson D, Cavalcante LS, Simões AZ, Joya MR, Longo E, et al. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloys Compd [Internet]. 2008 Jul 14;459(1–2):537–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925838807011930
  • 32. Petrov T, Markova-Deneva I, Chauvet O, Nikolov R, Denev I. SEM and FT-IR spectroscopy study of Cu, Sn and Cu-Sn nanoparticles. J Univ Chem Technol Metall [Internet]. 2012;47(2):197–206. Available from: https://www.researchgate.net/publication/287352862
  • 33. Diraz Uribe CE, Vallejo Lozada WA, Martinez Ortega F. Synthesis and characterization of TiO2 thin films dopedwith copper to be used in photocatalysis. Iteckne. 2013;10(1):16–20.
  • 34. Abd-Elnaiem AM, Abdel-Rahim MA, Abdel-Latief AY, Mohamed AA-R, Mojsilović K, Stępniowski WJ. Fabrication, Characterization and Photocatalytic Activity of Copper Oxide Nanowires Formed by Anodization of Copper Foams. Materials (Basel) [Internet]. 2021 Sep 2;14(17):5030. Available from: https://www.mdpi.com/1996-1944/14/17/5030
  • 35. Hesari Z, Shirkavand Hadavand B. Synthesis and Study on Conductivity of Urethane Acrylate/Polyaniline/CuO Nanocomposites. J Appl Chem Res [Internet]. 2018;12(4):66–77. Available from: https://jacr.karaj.iau.ir/article_545208.html
  • 36. Yazar S, Atun G. Electrochemical synthesis of tunable polypyrrole‐based composites on carbon fabric for wide potential window aqueous supercapacitor. Int J Energy Res [Internet]. 2022 Aug 27;46(10):14408–23. Available from: https://onlinelibrary.wiley.com/doi/10.1002/er.8168
  • 37. Dadamos TRL, Teixeira MFS. Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode. Electrochim Acta [Internet]. 2009 Jul 30;54(19):4552–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013468609004174
  • 38. Li M, Liu L, Xiong Y, Liu X, Nsabimana A, Bo X, et al. Bimetallic MCo (M=Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection. Sensors Actuators B Chem [Internet]. 2015 Feb 1;207:614–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925400514013045
  • 39. Esmaeeli A, Ghaffarinejad A, Zahedi A, Vahidi O. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor. Sensors Actuators B Chem [Internet]. 2018 Aug 1;266:294–301. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925400518306300
  • 40. Ghanbari K, Babaei Z. Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem [Internet]. 2016 Apr 1;498:37–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003269716000087
  • 41. Mamleyev ER, Weidler PG, Nefedov A, Szabó DV, Islam M, Mager D, et al. Nano- and Microstructured Copper/Copper Oxide Composites on Laser-Induced Carbon for Enzyme-Free Glucose Sensors. ACS Appl Nano Mater [Internet]. 2021 Dec 24;4(12):13747–60. Available from: https://pubs.acs.org/doi/10.1021/acsanm.1c03149
  • 42. Wei C, Zou X, Liu Q, Li S, Kang C, Xiang W. A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays. Electrochim Acta [Internet]. 2020 Feb 20;334:135630. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013468620300219
  • 43. Sridara T, Upan J, Saianand G, Tuantranont A, Karuwan C, Jakmunee J. Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode. Sensors [Internet]. 2020 Feb 2;20(3):808. Available from: https://www.mdpi.com/1424-8220/20/3/808
  • 44. Ashok A, Kumar A, Tarlochan F. Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles. Appl Surf Sci [Internet]. 2019 Jul 1;481:712–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433219307792
  • 45. Anu Prathap MU, Kaur B, Srivastava R. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J Colloid Interface Sci [Internet]. 2012 Mar 15;370(1):144–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979712000033

A Highly Sensitive Non-Enzymatic Sensor for the Determination of Glucose Based on Aniline-2-sulfonic acid-Modified Cu Electrode

Year 2023, , 227 - 240, 28.02.2023
https://doi.org/10.18596/jotcsa.1182942

Abstract

Herein, the copper-based electrodes were successfully synthesized with galvanostatic electrodeposition method. The effect of materials obtained at different concentrations of ASA and anodization times on glucose sensing ability was investigated. During the anodization of copper foil in the presence of ASA molecules, it formed a tree branch-like structure connected to each other while decorating the electrode surface. The Cu(30)/ASA(0.02) electrode exhibited a relatively wide linear range (0.2 – 10.0 mM) and a low detection limit (0.826 µM). These excellent activities were mainly attributed to the surface morphology, which functions as highly active sites and enhanced electronic conductive pathways with the addition of ASA. In addition, the stability obtained together with the excellent sensing ability in beverages makes the electrodes useful for practical applications.

Thanks

M.B. Arvas especially thanks Prof. Dr. Yucel Sahin for his valuable contributions to this study.

References

  • 1. Yoo E-H, Lee S-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors [Internet]. 2010 May 4;10(5):4558–76. Available from: http://www.mdpi.com/1424-8220/10/5/4558
  • 2. Khor SM, Choi J, Won P, Ko SH. Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes. Nanomaterials [Internet]. 2022 Jan 10;12(2):221. Available from: https://www.mdpi.com/2079-4991/12/2/221
  • 3. Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors [Internet]. 2022 Feb 22;12(3):137. Available from: https://www.mdpi.com/2079-6374/12/3/137
  • 4. Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors [Internet]. 2021 Jul 8;21(14):4672. Available from: https://www.mdpi.com/1424-8220/21/14/4672
  • 5. Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev [Internet]. 2017 Jun 27;6(3):301–29. Available from: https://www.degruyter.com/document/doi/10.1515/ntrev-2016-0014/html
  • 6. Barbee B, Muchharla B, Adedeji A, Karoui A, Kumar Sadasivuni K, Sha MS, et al. Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection. Sci Rep [Internet]. 2022 May 7;12(1):7507. Available from: https://www.nature.com/articles/s41598-022-11563-4
  • 7. Pourbeyram S, Mehdizadeh K. Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles. J Food Drug Anal [Internet]. 2016 Oct 1;24(4):894–902. Available from: https://linkinghub.elsevier.com/retrieve/pii/S102194981630031X
  • 8. Yazar S, Kurtulbaş E, Ortaboy S, Atun G, Şahin S. Screening of the antioxidant properties of olive (Olea europaea) leaf extract by titanium based reduced graphene oxide electrode. Korean J Chem Eng [Internet]. 2019 Jul 25;36(7):1184–92. Available from: http://link.springer.com/10.1007/s11814-019-0288-9
  • 9. Kurtulbaş E, Yazar S, Ortaboy S, Atun G, Şahin S. Evaluation of the phenolic antioxidants of olive (Olea europaea) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis. Chem Eng Commun [Internet]. 2020 Jul 2;207(7):920–32. Available from: https://www.tandfonline.com/doi/full/10.1080/00986445.2019.1630397
  • 10. Białas K, Moschou D, Marken F, Estrela P. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Microchim Acta [Internet]. 2022 Apr 2;189(4):172. Available from: https://link.springer.com/10.1007/s00604-022-05252-2
  • 11. Liu X, Cui S, Sun Z, Du P. Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim Acta [Internet]. 2015 Apr 1;160:202–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013468615001437
  • 12. Arvas MB, Gencten M, Sahin Y. One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics (Kiel) [Internet]. 2021 May 5;27(5):2241–56. Available from: https://link.springer.com/10.1007/s11581-021-03986-2
  • 13. Mansuroglu A, Arvas MB, Kiraz C, Sayhan B, Akgumus A, Gencten M, et al. N-Doped Graphene Oxide as Additive for Fumed Silica Based Gel Electrolyte of Valve Regulated Lead Acid Batteries. J Electrochem Soc [Internet]. 2021 Jun 1;168(6):060512. Available from: https://iopscience.iop.org/article/10.1149/1945-7111/ac0555
  • 14. Jiang D, Liu Q, Wang K, Qian J, Dong X, Yang Z, et al. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens Bioelectron [Internet]. 2014 Apr 15;54:273–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956566313007835
  • 15. Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y, et al. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon N Y [Internet]. 2020 Jan 1;156:506–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0008622319310115
  • 16. Anand VK, Bhatt K, Kumar S, Archana B, Sharma S, Singh K, et al. Sensitive and Enzyme-Free Glucose Sensor Based on Copper Nanowires/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink. Int J Nanosci [Internet]. 2021 Apr 10 [cited 2023 Feb 26];20(02):2150020. Available from: https://www.worldscientific.com/doi/abs/10.1142/S0219581X21500204
  • 17. Phetsang S, Kidkhunthod P, Chanlek N, Jakmunee J, Mungkornasawakul P, Ounnunkad K. Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application. Sci Rep [Internet]. 2021 Apr 29;11(1):9302. Available from: https://www.nature.com/articles/s41598-021-88747-x
  • 18. Yazar S, Arvas MB, Sahin Y. An ultrahigh‐energy density and wide potential window aqueous electrolyte supercapacitor built by polypyrrole/aniline 2‐sulfonic acid modified carbon felt electrode. Int J Energy Res [Internet]. 2022 May 9;46(6):8042–60. Available from: https://onlinelibrary.wiley.com/doi/10.1002/er.7706
  • 19. Arvas MB, Yazar S, Sahin Y. Electrochemical synthesis and characterization of self-doped aniline 2-sulfonic acid-modified flexible electrode with high areal capacitance and rate capability for supercapacitors. Synth Met [Internet]. 2022 Apr 1;285:117017. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037967792200011X
  • 20. Sokolova MP, Bobrova N V., Dmitriev IY, Vlasov P V., Smirnov NN, Elyashevich GK, et al. Anticorrosion activity of aniline–aniline-2-sulfonic acid copolymers on the steel surface. Russ J Appl Chem [Internet]. 2016 Mar 15;89(3):432–8. Available from: http://link.springer.com/10.1134/S1070427216030137
  • 21. Marioli JM, Kuwana T. Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim Acta [Internet]. 1992 Jun;37(7):1187–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/001346869285055P
  • 22. Li Z, Chen Y, Xin Y, Zhang Z. Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Sci Rep [Internet]. 2015 Nov 2;5(1):16115. Available from: https://www.nature.com/articles/srep16115
  • 23. Wang G, Ding Y, Wang F, Li X, Li C. Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility. J Colloid Interface Sci [Internet]. 2008 Jan 1;317(1):199–205. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979707013471
  • 24. Şahin Y, Pekmez K, Yıldız A. Electropolymerization and in situ sulfonation of aniline in water–acetonitrile mixture containing FSO3H. Synth Met [Internet]. 2002 Nov;131(1–3):7–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037967790200125X
  • 25. Şahin Y, Pekmez K, Yıldız A. Electrochemical preparation of soluble sulfonated polymers and aniline copolymers of aniline sulfonic acids in dimethylsulfoxide. J Appl Polym Sci [Internet]. 2003 Nov 21;90(8):2163–9. Available from: https://onlinelibrary.wiley.com/doi/10.1002/app.12858
  • 26. Sudha V, Murugadoss G, Thangamuthu R. Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Sci Rep [Internet]. 2021 Feb 9;11(1):3413. Available from: https://www.nature.com/articles/s41598-021-82741-z
  • 27. Abunahla H, Mohammad B, Alazzam A, Jaoude MA, Al-Qutayri M, Abdul Hadi S, et al. MOMSense: Metal-Oxide-Metal Elementary Glucose Sensor. Sci Rep [Internet]. 2019 Apr 2;9(1):5524. Available from: https://www.nature.com/articles/s41598-019-41892-w
  • 28. Strakosas X, Selberg J, Pansodtee P, Yonas N, Manapongpun P, Teodorescu M, et al. A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci Rep [Internet]. 2019 Jul 26;9(1):10844. Available from: https://www.nature.com/articles/s41598-019-46302-9
  • 29. Jayarathne RMHH, Pitigala PKDDP, Perera VP. Electronic and structural properties of Cu2O polycrystalline thin films grown on adhesive copper tape. Proc Tech Sess [Internet]. 2019 [cited 2023 Feb 26];35:31–8. Available from: https://drive.google.com/file/d/1fzP1Z9_PAk263rWMP_V7PUetK_NsfnTy/view
  • 30. He D, Wang G, Liu G, Suo H, Zhao C. Construction of leaf-like CuO–Cu 2 O nanocomposites on copper foam for high-performance supercapacitors. Dalt Trans [Internet]. 2017;46(10):3318–24. Available from: http://xlink.rsc.org/?DOI=C7DT00287D
  • 31. Volanti DP, Keyson D, Cavalcante LS, Simões AZ, Joya MR, Longo E, et al. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloys Compd [Internet]. 2008 Jul 14;459(1–2):537–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925838807011930
  • 32. Petrov T, Markova-Deneva I, Chauvet O, Nikolov R, Denev I. SEM and FT-IR spectroscopy study of Cu, Sn and Cu-Sn nanoparticles. J Univ Chem Technol Metall [Internet]. 2012;47(2):197–206. Available from: https://www.researchgate.net/publication/287352862
  • 33. Diraz Uribe CE, Vallejo Lozada WA, Martinez Ortega F. Synthesis and characterization of TiO2 thin films dopedwith copper to be used in photocatalysis. Iteckne. 2013;10(1):16–20.
  • 34. Abd-Elnaiem AM, Abdel-Rahim MA, Abdel-Latief AY, Mohamed AA-R, Mojsilović K, Stępniowski WJ. Fabrication, Characterization and Photocatalytic Activity of Copper Oxide Nanowires Formed by Anodization of Copper Foams. Materials (Basel) [Internet]. 2021 Sep 2;14(17):5030. Available from: https://www.mdpi.com/1996-1944/14/17/5030
  • 35. Hesari Z, Shirkavand Hadavand B. Synthesis and Study on Conductivity of Urethane Acrylate/Polyaniline/CuO Nanocomposites. J Appl Chem Res [Internet]. 2018;12(4):66–77. Available from: https://jacr.karaj.iau.ir/article_545208.html
  • 36. Yazar S, Atun G. Electrochemical synthesis of tunable polypyrrole‐based composites on carbon fabric for wide potential window aqueous supercapacitor. Int J Energy Res [Internet]. 2022 Aug 27;46(10):14408–23. Available from: https://onlinelibrary.wiley.com/doi/10.1002/er.8168
  • 37. Dadamos TRL, Teixeira MFS. Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode. Electrochim Acta [Internet]. 2009 Jul 30;54(19):4552–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013468609004174
  • 38. Li M, Liu L, Xiong Y, Liu X, Nsabimana A, Bo X, et al. Bimetallic MCo (M=Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection. Sensors Actuators B Chem [Internet]. 2015 Feb 1;207:614–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925400514013045
  • 39. Esmaeeli A, Ghaffarinejad A, Zahedi A, Vahidi O. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor. Sensors Actuators B Chem [Internet]. 2018 Aug 1;266:294–301. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925400518306300
  • 40. Ghanbari K, Babaei Z. Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem [Internet]. 2016 Apr 1;498:37–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003269716000087
  • 41. Mamleyev ER, Weidler PG, Nefedov A, Szabó DV, Islam M, Mager D, et al. Nano- and Microstructured Copper/Copper Oxide Composites on Laser-Induced Carbon for Enzyme-Free Glucose Sensors. ACS Appl Nano Mater [Internet]. 2021 Dec 24;4(12):13747–60. Available from: https://pubs.acs.org/doi/10.1021/acsanm.1c03149
  • 42. Wei C, Zou X, Liu Q, Li S, Kang C, Xiang W. A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays. Electrochim Acta [Internet]. 2020 Feb 20;334:135630. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013468620300219
  • 43. Sridara T, Upan J, Saianand G, Tuantranont A, Karuwan C, Jakmunee J. Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode. Sensors [Internet]. 2020 Feb 2;20(3):808. Available from: https://www.mdpi.com/1424-8220/20/3/808
  • 44. Ashok A, Kumar A, Tarlochan F. Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles. Appl Surf Sci [Internet]. 2019 Jul 1;481:712–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433219307792
  • 45. Anu Prathap MU, Kaur B, Srivastava R. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J Colloid Interface Sci [Internet]. 2012 Mar 15;370(1):144–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979712000033
There are 45 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry, Electrochemistry, Chemical Engineering
Journal Section Articles
Authors

Melih Beşir Arvas 0000-0001-5697-4195

Publication Date February 28, 2023
Submission Date October 1, 2022
Acceptance Date December 26, 2022
Published in Issue Year 2023

Cite

Vancouver Arvas MB. A Highly Sensitive Non-Enzymatic Sensor for the Determination of Glucose Based on Aniline-2-sulfonic acid-Modified Cu Electrode. JOTCSA. 2023;10(1):227-40.