Research Article
BibTex RIS Cite

A Direct Synthesis Route of Thermally Expanded Graphene for Electrically Conductive PEEK Polymer Composites with Environmental Assessment Analysis

Year 2025, Volume: 12 Issue: 4, 207 - 220, 01.12.2025
https://doi.org/10.18596/jotcsa.1722180

Abstract

This study presents a rapid and chemical-free synthesis of thermally expanded graphene (TEG), which is a lightweight carbon material, via 5-minute single-step thermal exfoliation of commercially available expandable graphite. The resulting TEG exhibits ultralow density of 0.0195 g/mL and a significant volumetric expansion ratio (32-fold), indicative of a porous network structure. Structural analyses confirmed the effective removal of oxygen-containing groups (C/O ratio increased from 4.7 to 79.0), restoration of conjugated graphitic domains (I2D/IG value of 0.57), the material's thermal robustness (single major decomposition stage beginning at 595 °C), and the formation of wrinkled layers with microholes resulting from gas release. Importantly, a life cycle assessment (LCA) revealed a moderate global warming potential (0.0233 kg CO₂-eq/g), substantially lower than that of reduced graphene oxide (rGO) and carbon nanotubes (CNTs). For the first time, TEG was incorporated into polyetheretherketone (PEEK) to fabricate conductive polymer composites, achieving an electrical conductivity of 0.003381 S/cm at 10 wt.% loading. These findings highlight TEG as a sustainable and high-performance conductive filler for advanced thermoplastic applications in polymer matrices.

Thanks

I would like to extend my heartfelt thanks to Prof. Dr. Burcu Saner Okan from Sabancı University, Faculty of Engineering and Natural Sciences, and Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence for her support in providing access to laboratory facilities. In addition, special thanks to Dr. Havva Başkan Bayrak from the same center for her valuable assistance with the Life Cycle Assessment results. For electrical conductivity measurements, I also extend my sincere thanks to Dr. Mohammad Sajad Sorayani Bafqi from Sabancı University.

References

  • 1. Maruthi N, Faisal M, Raghavendra N. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects. Synth Met [Internet]. 2021 Feb 1;272:116664. Available from: <URL>.
  • 2. Tran V Van, Lee S, Lee D, Le TH. Recent developments and implementations of conductive polymer-based flexible devices in sensing applications. Polymers (Basel) [Internet]. 2022 Sep 7;14(18):3730. Available from: <URL>.
  • 3. Namsheer K, Rout CS. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv [Internet]. 2021 Feb 3;11(10):5659–97. Available from: <URL>.
  • 4. Mokhtari M, Archer E, Bloomfield N, Harkin‐Jones E, McIlhagger A. A review of electrically conductive poly(ether ether ketone) materials. Polym Int [Internet]. 2021 Aug 2;70(8):1016–25. Available from: <URL>.
  • 5. Zaccone M, Frache A, Torre L, Armentano I, Monti M. Effect of filler morphology on the electrical and thermal conductivity of PP/carbon-based nanocomposites. J Compos Sci [Internet]. 2021 Jul 23;5(8):196. Available from: <URL>.
  • 6. Mehmood Z, Shah SAA, Omer S, Idrees R, Saeed S. Scalable synthesis of high-quality, reduced graphene oxide with a large C/O ratio and its dispersion in a chemically modified polyimide matrix for electromagnetic interference shielding applications. RSC Adv [Internet]. 2024 Mar 4;14(11):7641–54. Available from: <URL>.
  • 7. Niu Y, Zhang Y, Yao J, Wang H. Improving resistance–strain effects of conductive polymer composites modified by multiscale fillers: Short carbon fiber and carbon nanotube. Polym Compos [Internet]. 2024 May 10;45(7):5839–52. Available from: <URL>.
  • 8. Luo X, Yang G, Schubert DW. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv Compos Hybrid Mater [Internet]. 2022 Mar 30;5(1):250–62. Available from: <URL>.
  • 9. Wang H, Qu Q, Wang J, Gao J, Yang J, He Y. Recent advances in the dispersion and interfacial characteristics of carbon nanotubes within polyamide composites. Polym Compos [Internet]. 2025 Jun 20;46(9):7763–84. Available from: <URL>.
  • 10. Saner Okan B. Fabrication of multilayer graphene oxide-reinforced high density polyethylene nanocomposites with enhanced thermal and mechanical properties via thermokinetic mixing. Turkish J Chem [Internet]. 2017 Jan 1;41(3):381–90. Available from: <URL>.
  • 11. Qureshi N, Dhand V, Subhani S, Kumar RS, Raghavan N, Kim S, et al. Exploring conductive filler‐embedded polymer nanocomposite for electrical percolation via electromagnetic shielding‐based additive manufacturing. Adv Mater Technol [Internet]. 2024 Apr 18;9(17):2400250. Available from: <URL>.
  • 12. Kumuda S, Gandhi U, Mangalanathan U, Rajanna K. Synthesis and characterization of graphene oxide and reduced graphene oxide chemically reduced at different time duration. J Mater Sci Mater Electron [Internet]. 2024 Mar 24;35(9):637. Available from: <URL>.
  • 13. Kausar A. Poly(ether ether ketone) nanocomposites with graphene and derivative nanoreinforcements—contemporary scientific paragon and prospering breakthroughs. Polym Technol Mater [Internet]. 2025 May 3;64(7):973–97. Available from: <URL>.
  • 14. Martínez-Gómez A, Quiles-Díaz S, Enrique-Jimenez P, Flores A, Ania F, Gómez-Fatou MA, et al. Searching for effective compatibilizing agents for the preparation of poly(ether ether ketone)/graphene nanocomposites with enhanced properties. Compos Part A Appl Sci Manuf [Internet]. 2018 Oct 1;113:180–8. Available from: <URL>.
  • 15. Singh SB, De M. Effects of gaseous environments on physicochemical properties of thermally exfoliated graphene oxides for hydrogen storage: a comparative study. J Porous Mater [Internet]. 2021 Jun 5;28(3):875–88. Available from: <URL>.
  • 16. Tuna Genç M, Sarilmaz A, Dogan S, Aksoy Çekceoğlu İ, Ozen A, Aslan E, et al. Thermally-exfoliated graphene oxide/ZnO nanocomposite catalysts for photocatalytic hydrogen evolution and antibacterial activities. Int J Hydrogen Energy [Internet]. 2023 Sep 12;48(78):30407–19. Available from: <URL>.
  • 17. Darabut AM, Lobko Y, Yakovlev Y, Rodríguez MG, Veltruská K, Šmíd B, et al. Influence of thermal treatment on the structure and electrical conductivity of thermally expanded graphite. Adv Powder Technol [Internet]. 2022 Dec 1;33(12):103884. Available from: <URL>.
  • 18. Çalın Ö, Kurt A, Çelik Y. Influence of expansion conditions and precursor flake size on porous structure of expanded graphite. Fullerenes, Nanotub Carbon Nanostructures [Internet]. 2020 Aug 2;28(8):611–20. Available from: <URL>.
  • 19. Bao D, Gao Y, Cui Y, Xu F, Shen X, Geng H, et al. A novel modified expanded graphite/epoxy 3D composite with ultrahigh thermal conductivity. Chem Eng J [Internet]. 2022 Apr 1;433:133519. Available from: <URL>.
  • 20. Son DK, Kim J, Raj MR, Lee G. Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries. Carbon N Y [Internet]. 2021 Apr 30;175:187–201. Available from: <URL>.
  • 21. Murugan P, Nagarajan RD, Shetty BH, Govindasamy M, Sundramoorthy AK. Recent trends in the applications of thermally expanded graphite for energy storage and sensors – a review. Nanoscale Adv [Internet]. 2021 Nov 9;3(22):6294–309. Available from: <URL>.
  • 22. Classification P. (12) Patent application publication (10) Pub. No.: US 2009/0054581 A1. Vol. 1. 2009.
  • 23. Tarannum F, Danayat S, Nayal A, Muthaiah R, Annam RS, Garg J. Thermally expanded graphite polyetherimide composite with superior electrical and thermal conductivity. Mater Chem Phys [Internet]. 2023 Apr 1;298:127404. Available from: <URL>.
  • 24. Mohammad H, Stepashkin AA, Laptev AI, Tcherdyntsev V V. Mechanical and conductive behavior of graphite filled polysulfone-based composites. Appl Sci [Internet]. 2022 Dec 30;13(1):542. Available from: <URL>.
  • 25. Goyal RK. Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application. Mater Chem Phys [Internet]. 2013 Oct 15;142(1):195–8. Available from: <URL>.
  • 26. Keyte J, Pancholi K, Njuguna J. Recent developments in graphene oxide/epoxy carbon fiber-reinforced composites. Front Mater [Internet]. 2019 Oct 9;6:471696. Available from: <URL>.
  • 27. Surovtseva D, Crossin E, Pell R, Stamford L. Toward a life cycle inventory for graphite production. J Ind Ecol [Internet]. 2022 Jun 14;26(3):964–79. Available from: <URL>.
  • 28. Engels P, Cerdas F, Dettmer T, Frey C, Hentschel J, Herrmann C, et al. Life cycle assessment of natural graphite production for lithium-ion battery anodes based on industrial primary data. J Clean Prod [Internet]. 2022 Feb 15;336:130474. Available from: <URL>.
  • 29. Rahman MM, Nisar U, Abouimrane A, Belharouak I, Amin R. Valuation of anode materials for high-performance lithium batteries: From graphite to lithium metal and beyond. Electrochem Energy Rev [Internet]. 2025 Dec 31;8(1):14. Available from: <URL>.
  • 30. Canseco V, Anguy Y, Roa JJ, Palomo E. Structural and mechanical characterization of graphite foam/phase change material composites. Carbon N Y [Internet]. 2014 Aug 1;74:266–81. Available from: <URL>.
  • 31. Potts JR, Shankar O, Murali S, Du L, Ruoff RS. Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol [Internet]. 2013 Jan 24;74:166–72. Available from: <URL>.
  • 32. Goudarzi R, Hashemi Motlagh G. The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon [Internet]. 2019 Oct 1;5(10):e02595. Available from: <URL>.
  • 33. Chomkhuntod P, Kornnum S, Arayawate S, Wang B, Iamprasertkun P. Ultra-fast electrochemical expansion for rapid enhancement of graphite paper electrode. ACS Phys Chem Au [Internet]. 2025 Jul 23;5(4):318–26. Available from: <URL>.
  • 34. Kmeťová E, Kačík F, Kubovský I, Kačíková D. Effect of expandable graphite flakes on the flame resistance of oak wood. Coatings [Internet]. 2022 Dec 6;12(12):1908. Available from: <URL>.
  • 35. Lan R, Su W, Li J. Preparation and catalytic performance of expanded graphite for oxidation of organic pollutant. Catalysts [Internet]. 2019 Mar 19;9(3):280. Available from: <URL>.
  • 36. Chi B, Yao Y, Cui S, Jin X. Preparation of graphene oxide coated tetradecanol/expanded graphite composite phase change material for thermal energy storage. Mater Lett [Internet]. 2021 Jan 1;282:128666. Available from: <URL>.
  • 37. Mostovoy AS, Yakovlev A V. Reinforcement of epoxy composites with graphite-graphene structures. Sci Rep [Internet]. 2019 Nov 7;9(1):16246. Available from: <URL>.
  • 38. Cakal Sarac E, Haghighi Poudeh L, Berktas I, Saner Okan B. Scalable fabrication of high‐performance graphene/polyamide 66 nanocomposites with controllable surface chemistry by melt compounding. J Appl Polym Sci [Internet]. 2021 Mar 10;138(10):49972. Available from: <URL>.
  • 39. Liu Z, Li G, Cui T, Borodin A, Kuhl C, Endres F. A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite. J Solid State Electrochem [Internet]. 2018 Jan 16;22(1):91–101. Available from: <URL>.
  • 40. Seyyed Monfared Zanjani J, Saner Okan B, Menceloglu Y. Manufacturing of multilayer graphene oxide/poly(ethylene terephthalate) nanocomposites with tunable crystallinity, chain orientations and thermal transitions. Mater Chem Phys [Internet]. 2016 Jun 15;176:58–67. Available from: <URL>.
  • 41. Pereira Junior AAM, dos Santos FKF, de Almeida Araújo F, Leite-Barbosa OS, Altoé L, Veiga-Junior VF. Chemical and structural analysis of graphene oxide reduced with naringenin: A natural product-based alternative. J Mater Res Technol [Internet]. 2025 Jul 1;37:2850–65. Available from: <URL>.
  • 42. Nuriskasari I, Syahrial AZ, Ivandini TA, Sumboja A, Priyono B, Yan Q, et al. Synthesis of graphitic carbon from empty palm oil fruit bunches through single-step graphitization process using K2FeO4-KOH catalyst as lithium ion battery anode. Results Eng [Internet]. 2024 Dec 1;24:103273. Available from: <URL>.
  • 43. Haghighi Poudeh L, Saner Okan B, Seyyed Monfared Zanjani J, Yildiz M, Menceloglu Y. Design and fabrication of hollow and filled graphene-based polymeric spheres via core–shell electrospraying. RSC Adv [Internet]. 2015 Oct 26;5(111):91147–57. Available from: <URL>.
  • 44. Wei Q, Xu L, Tang Z, Xu Z, Xie C, Guo L, et al. High-performance expanded graphite from flake graphite by microwave-assisted chemical intercalation process. J Ind Eng Chem [Internet]. 2023 Jun 25;122:562–72. Available from: <URL>.
  • 45. Bannov AG, Ukhina A V., Maksimovskii EA, Prosanov IY, Shestakov AA, Lapekin NI, et al. Highly porous expanded graphite: Thermal shock vs. programmable heating. Materials (Basel) [Internet]. 2021 Dec 13;14(24):7687. Available from: <URL>.
  • 46. Alzoubi M, Khateeb S, Al-Hallaj S. Modeling of compression curves of phase change graphite composites using Maxwell and Kelvin models. J Compos Mater [Internet]. 2016 Apr 29;50(8):1123–35. Available from: <URL>.
  • 47. Focke WW, Muiambo H, Mhike W, Kruger HJ, Ofosu O. Flexible PVC flame retarded with expandable graphite. Polym Degrad Stab [Internet]. 2014 Feb 1;100(1):63–9. Available from: <URL>.
  • 48. Chen X, Xu X, Yi R, Rao D, Guo J, Zhou Y, et al. Surface functional hybridization of expandable graphite towards enhancing flame retardancy and conductivity of PVA solid electrolytes. Appl Surf Sci [Internet]. 2025 Aug 15;700:163244. Available from: <URL>.
  • 49. D’Aloia AG, Bidsorkhi HC, Tamburrano A, Sarto MS. Graphene-based electromagnetic absorbing textiles for 5G frequency bands. In: 2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI) [Internet]. IEEE; 2022. p. 7–11. Available from: <URL>.
  • 50. Oraby H, Naeem I, Darwish M, Senna MH, Tantawy HR. Electromagnetic interference shielding of thermally exfoliated graphene/polyurethane composite foams. J Appl Polym Sci [Internet]. 2022 Nov 5;139(41):e53008. Available from: <URL>.
  • 51. Nan X, Zhang Y, Shen J, Liang R, Wang J, Jia L, et al. A review of the establishment of effective conductive pathways of conductive polymer composites and advances in electromagnetic shielding. Polymers [Internet]. 2024 Sep 7;16(17):2539. Available from: <URL>.
  • 52. Li J, Wang J, Hao Y, Tan H, Shao B, Zhang C. Global evolution of research on life cycle assessment: A data-driven visualization of collaboration, frontier identification, and future trend. Environ Impact Assess Rev [Internet]. 2026 Jan 1;116:108093. Available from: <URL>.
  • 53. Tahir F, Mabrouk A, Al-Ghamdi SG, Krupa I, Sedlacek T, Abdala A, et al. Sustainability assessment and techno-economic analysis of thermally enhanced polymer tube for multi-effect distillation (MED) technology. Polymers (Basel) [Internet]. 2021 Feb 24;13(5):681. Available from: <URL>.
  • 54. Cossutta M, McKechnie J, Pickering SJ. A comparative LCA of different graphene production routes. Green Chem [Internet]. 2017 Dec 11;19(24):5874–84. Available from: <URL>.
  • 55. Munuera J, Britnell L, Santoro C, Cuéllar-Franca R, Casiraghi C. A review on sustainable production of graphene and related life cycle assessment. 2D Mater [Internet]. 2022 Jan 1;9(1):012002. Available from: <URL>.
  • 56. Serrano-Luján L, Víctor-Román S, Toledo C, Sanahuja-Parejo O, Mansour AE, Abad J, et al. Environmental impact of the production of graphene oxide and reduced graphene oxide. SN Appl Sci [Internet]. 2019 Feb 25;1(2):179. Available from: <URL>.
  • 57. Kocanalı A, Baskan-Bayrak H, Menceloglu Y, Saner Okan B. A selective upcycling approach: Growing 2D and 3D graphene oxide structures with size-controlled talc substrates from waste polypropylene with LCA protocols. J Polym Environ [Internet]. 2023 Sep 24;31(9):4052–68. Available from: <URL>.
  • 58. Teah HY, Sato T, Namiki K, Asaka M, Feng K, Noda S. Life cycle greenhouse gas Emissions of long and pure carbon nanotubes synthesized via on-substrate and fluidized-bed chemical vapor deposition. ACS Sustain Chem Eng [Internet]. 2020 Feb 3;8(4):1730–40. Available from: <URL>.
  • 59. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, et al. Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos [Internet]. 2013 Jun 16;118(11):5380–552. Available from: <URL>.
  • 60. Vilén A, Laurell P, Vahala R. Comparative life cycle assessment of activated carbon production from various raw materials. J Environ Manage [Internet]. 2022 Dec 15;324:116356. Available from: <URL>.
  • 61. Zhang S, Gan J, Lv J, Shen C, Xu C, Li F. Environmental impacts of carbon fiber production and decarbonization performance in wind turbine blades. J Environ Manage [Internet]. 2024 Feb 1;351:119893. Available from: <URL>.
  • 62. Hubynskyi S, Sybir A, Fedorov S, Usenko A, Hubynskyi M, Vvedenska T. Analysis of changes in global warming potential during enrichment and production of battery-grade graphite using electrothermal fluidized bed technology. IOP Conf Ser Earth Environ Sci [Internet]. 2024 May 1;1348(1):012028. Available from: <URL>.
There are 62 citations in total.

Details

Primary Language English
Subjects Structure and Dynamics of Materials, Nanochemistry
Journal Section Research Article
Authors

Semih Doğan 0000-0001-6872-4599

Submission Date June 18, 2025
Acceptance Date September 19, 2025
Publication Date December 1, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

Vancouver Doğan S. A Direct Synthesis Route of Thermally Expanded Graphene for Electrically Conductive PEEK Polymer Composites with Environmental Assessment Analysis. JOTCSA. 2025;12(4):207-20.