Research Article
BibTex RIS Cite
Year 2018, , 317 - 332, 01.09.2017
https://doi.org/10.18596/jotcsa.307414

Abstract

References

  • 1. Devi R, Batra B, Lata S, Yadav S, Pundir, CS. A method for determinationof xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochem. 2013; 48(2): 242‒9.
  • 2. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem. Soc. Rev. 2010; 39(5): 1747-63.
  • 3. Anik Ü, Çubukçu M. Examination of the electroanalytic performance of carbon nanotube (CNT) modified carbon paste electrodes as xanthine biosensor transducers. Turk. J. Chem. 2008; 32: 711-9.
  • 4. Jacobs CB, Peairs MJ, Venton, BJ. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010; 662(2): 105-27.
  • 5. Lin J, He C, Zhang L, Zhang S. Sensitive amperometric immunosensor for a-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal. Biochem. 2009; 384: 130–5.
  • 6. Kaçar C, Dalkiran B, Erden PE, Kiliç E. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl. Surf. Sci. 2014; 311: 139-46.
  • 7. Palanisamy S, Cheemalapati S, Chen SM. Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode. Anal. Biochem. 2012; 429(2): 108-15.
  • 8. Kavitha T, Gopalan AI, Lee KP, Park SY. Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 2012; 50(8): 2994-3000.
  • 9. Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ. A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J. Electroanal. Chem. 2011; 661: 8-12.
  • 10. Haghighi B, Bozorgzadeh S. Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled carbon nanotubes. Talanta 2011; 85(4): 2189-93.
  • 11. Ma W, Tian D. Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix. Bioelectrochem. 2010; 78(2): 106-12.
  • 12. Zhang W, Yang T, Huang D, Jiao K, Li G. Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J. Membr. Sci. 2008; 325(1): 245-51.
  • 13. Hu F, Chen S, Wang C, Yuan R, Chai Y, Xiang Y, Wang C. ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J. Mol. Catal. B: Enzym. 2011; 72(3): 298-304.
  • 14. Liu Y, Nie L, Tao W, Yao S. Full Paper Amperometric study of au-colloid function on xanthine biosensor based on xanthine oxidase immobilized in polypyrrole layer. Electroanal. 2004; 16: 1271–8.
  • 15. Zhao J, O'daly JP, Henkens RW, Stonehuerner J, Crumbliss AL. A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens. Bioelectron. 1996; 11(5): 493-502.
  • 16. Kilinc E, Erdem A, Gokgunnec L, Dalbasti T, Karaoglan M, Ozsoz M. Buttermilk based cobalt phthalocyanine dispersed ferricyanide mediated amperometric biosensor for the determination of xanthine. Electroanal. 1998; 10(4): 273-5.
  • 17. Arslan F, Yaşar A, Kılıç E. An amperometric biosensor for xanthine determination prepared from xanthine oxidase immobilized in polypyrrole film. Artif. cells blood substit. biotechnol. 2006; 34(1): 113-28.
  • 18. Teng Y, Chen C, Zhou C, Zhao H, Lan M. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system. Sci. China Chem. 2010; 53(12): 2581-6.
  • 19. Dalkiran B, Kacar C, Erden PE, Kilic E. Amperometric xanthine biosensors based on chitosan-Co 3 O 4-multiwall carbon nanotube modified glassy carbon electrode. Sens. Actuators B Chem. 2014; 200: 83-91.
  • 20. Zhang S, Wang N, Niu Y, Sun C. Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sens. Actuators B Chem. 2005; 109: 367–74
  • 21. Jakobs RCM, Janssen LJJ, Barendrecht E. Hydroquinone oxidation and p-benzoquinone reduction at polypyrrole and poly-N-methylpyrrole electrodes. Electrochim. Acta, 1985; 30(10): 1313-21.
  • 22. Pajkossy T, Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. in Electrochem. 2010; 1: 53-8.
  • 23. Mulchandani, A., Pan, A.S. and Wilfred, C. 1999. Fiber‒Optic Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents. Biotechnol. Prog., 15, 130‒4.
  • 24. Kanyong, P., Pemberton, R.M., Jackson, S.K. and Hart, J.P. 2013. Development of an amperometric screen‒printed galactose biosensor for serum analysis. Analytical Biochemistry 435, 114–9.
  • 25. Shan D, Wang Y, Xue H. Cosnier S. Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. Sens. Actuators B Chem. 2009; 136: 510–5.
  • 26. Jain U, Narang J, Rani K, Chauhan N. Synthesis of cadmium oxide and carbon nanotube based nanocomposites and their use as a sensing interface for xanthine detection. RSC Adv.2015; 5: 29675-83.
  • 27. Erden P, Pekyardımcı Ş, Kılıç E. Amperometric enzyme electrodes for xanthine determination with different mediators. Acta Chim. Slov., 2012; 59(4): 824-32. 28. Borisova B, Ramos, J, Díez, P, Sánchez, A, Parrado, C, Araque, E, Villalonga, R, Pingarrón, J.M. A Layer-by-Layer Biosensing Architecture Based on Polyamidoamine Dendrimer and Carboxymethylcellulose-Modified Graphene Oxide. Electroanalysis 2015; 27: 2131–8.
  • 29. Baş SZ, Gulce H, Yıldız S, Gulce A. Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection. Talanta 2011; 87: 189–96.
  • 30. Dodevska T, Horozova E, Dimcheva N. Design of an amperometric xanthine biosensor based on a graphite transducer patterned with noble metal microparticles. Cent. Euro. J. Chem. 2010; 8: 19–27.
  • 31. Dervisevic M, Custiuc E, Çeviki E, Şenel M. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem. 2015; 181: 277-83.
  • 32. Devi R, Yadav S, Pundir CS. Au-colloids–polypyrrole nanocomposite film based xanthine biosensor. Colloids Surf. A Physicochem. Eng. Asp. 2012; 394: 38-45.
  • 33. Gao Y, Shen C, Di J, Tu Y. Fabrication of amperometric xanthine biosensors based on direct chemistry of xanthine oxidase, Mater. Sci. Eng. C 2009; 29: 2213–6.
  • 34. Bas S.Z, Gulce H, Yıldız S. Amperometric xanthine biosensors based on electrodeposition of platinum on polyvinylferrocenium coated Pt electrode, J. Mol. Catal. B: Enzym 2011; 72: 282–8.
  • 35. Kalimuthu P, Leimkuhler S, Bernhardt P.V. Low-potential amperometric enzyme biosensor for xanthine and hypoxanthine, Anal. Chem. 2012; 84: 10359–65.
  • 36. Devi R, Yadav S, Nehra R, Yadav S, Pundir C.S. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat, J. Food Eng. 2013; 115: 207–14.

Electrochemical xanthine biosensor based on zinc oxide nanoparticles‒multiwalled carbon nanotubes‒1,4-benzoquinone composite

Year 2018, , 317 - 332, 01.09.2017
https://doi.org/10.18596/jotcsa.307414

Abstract



Zinc oxide nanoparticles (ZnONPs),
multiwalled carbon nanotubes (MWCNTs) and 1,4-benzoquinone (BQ) dispersed in
chitosan (CS) matrix were used to construct a xanthine biosensor. Xanthine
oxidase (XOx) was immobilized onto BQ-MWCNTs-ZnO–CS composite modified glassy
carbon electrode (GCE) using glutaraldehyde as the crosslinking agent. The
parameters of the construction process and the experimental variables for the
biosensor were optimized. The xanthine biosensor showed optimum response within
10 s, and the sensitivity was 39.4 μA/mMcm2 at +0.25 V (vs.
Ag/AgCl). The linear working range of the biosensor was found to be 9.0×10−7
-1.1×10−4
M with a detection limit of 2.1×10-7 M. The biosensor exhibited good
long-term stability and reproducibility. The presented biosensor was also used
for monitoring the freshnesses of chicken and beef flesh.

References

  • 1. Devi R, Batra B, Lata S, Yadav S, Pundir, CS. A method for determinationof xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochem. 2013; 48(2): 242‒9.
  • 2. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem. Soc. Rev. 2010; 39(5): 1747-63.
  • 3. Anik Ü, Çubukçu M. Examination of the electroanalytic performance of carbon nanotube (CNT) modified carbon paste electrodes as xanthine biosensor transducers. Turk. J. Chem. 2008; 32: 711-9.
  • 4. Jacobs CB, Peairs MJ, Venton, BJ. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010; 662(2): 105-27.
  • 5. Lin J, He C, Zhang L, Zhang S. Sensitive amperometric immunosensor for a-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal. Biochem. 2009; 384: 130–5.
  • 6. Kaçar C, Dalkiran B, Erden PE, Kiliç E. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl. Surf. Sci. 2014; 311: 139-46.
  • 7. Palanisamy S, Cheemalapati S, Chen SM. Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode. Anal. Biochem. 2012; 429(2): 108-15.
  • 8. Kavitha T, Gopalan AI, Lee KP, Park SY. Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 2012; 50(8): 2994-3000.
  • 9. Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ. A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J. Electroanal. Chem. 2011; 661: 8-12.
  • 10. Haghighi B, Bozorgzadeh S. Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled carbon nanotubes. Talanta 2011; 85(4): 2189-93.
  • 11. Ma W, Tian D. Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix. Bioelectrochem. 2010; 78(2): 106-12.
  • 12. Zhang W, Yang T, Huang D, Jiao K, Li G. Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J. Membr. Sci. 2008; 325(1): 245-51.
  • 13. Hu F, Chen S, Wang C, Yuan R, Chai Y, Xiang Y, Wang C. ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J. Mol. Catal. B: Enzym. 2011; 72(3): 298-304.
  • 14. Liu Y, Nie L, Tao W, Yao S. Full Paper Amperometric study of au-colloid function on xanthine biosensor based on xanthine oxidase immobilized in polypyrrole layer. Electroanal. 2004; 16: 1271–8.
  • 15. Zhao J, O'daly JP, Henkens RW, Stonehuerner J, Crumbliss AL. A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens. Bioelectron. 1996; 11(5): 493-502.
  • 16. Kilinc E, Erdem A, Gokgunnec L, Dalbasti T, Karaoglan M, Ozsoz M. Buttermilk based cobalt phthalocyanine dispersed ferricyanide mediated amperometric biosensor for the determination of xanthine. Electroanal. 1998; 10(4): 273-5.
  • 17. Arslan F, Yaşar A, Kılıç E. An amperometric biosensor for xanthine determination prepared from xanthine oxidase immobilized in polypyrrole film. Artif. cells blood substit. biotechnol. 2006; 34(1): 113-28.
  • 18. Teng Y, Chen C, Zhou C, Zhao H, Lan M. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system. Sci. China Chem. 2010; 53(12): 2581-6.
  • 19. Dalkiran B, Kacar C, Erden PE, Kilic E. Amperometric xanthine biosensors based on chitosan-Co 3 O 4-multiwall carbon nanotube modified glassy carbon electrode. Sens. Actuators B Chem. 2014; 200: 83-91.
  • 20. Zhang S, Wang N, Niu Y, Sun C. Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sens. Actuators B Chem. 2005; 109: 367–74
  • 21. Jakobs RCM, Janssen LJJ, Barendrecht E. Hydroquinone oxidation and p-benzoquinone reduction at polypyrrole and poly-N-methylpyrrole electrodes. Electrochim. Acta, 1985; 30(10): 1313-21.
  • 22. Pajkossy T, Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. in Electrochem. 2010; 1: 53-8.
  • 23. Mulchandani, A., Pan, A.S. and Wilfred, C. 1999. Fiber‒Optic Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents. Biotechnol. Prog., 15, 130‒4.
  • 24. Kanyong, P., Pemberton, R.M., Jackson, S.K. and Hart, J.P. 2013. Development of an amperometric screen‒printed galactose biosensor for serum analysis. Analytical Biochemistry 435, 114–9.
  • 25. Shan D, Wang Y, Xue H. Cosnier S. Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. Sens. Actuators B Chem. 2009; 136: 510–5.
  • 26. Jain U, Narang J, Rani K, Chauhan N. Synthesis of cadmium oxide and carbon nanotube based nanocomposites and their use as a sensing interface for xanthine detection. RSC Adv.2015; 5: 29675-83.
  • 27. Erden P, Pekyardımcı Ş, Kılıç E. Amperometric enzyme electrodes for xanthine determination with different mediators. Acta Chim. Slov., 2012; 59(4): 824-32. 28. Borisova B, Ramos, J, Díez, P, Sánchez, A, Parrado, C, Araque, E, Villalonga, R, Pingarrón, J.M. A Layer-by-Layer Biosensing Architecture Based on Polyamidoamine Dendrimer and Carboxymethylcellulose-Modified Graphene Oxide. Electroanalysis 2015; 27: 2131–8.
  • 29. Baş SZ, Gulce H, Yıldız S, Gulce A. Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection. Talanta 2011; 87: 189–96.
  • 30. Dodevska T, Horozova E, Dimcheva N. Design of an amperometric xanthine biosensor based on a graphite transducer patterned with noble metal microparticles. Cent. Euro. J. Chem. 2010; 8: 19–27.
  • 31. Dervisevic M, Custiuc E, Çeviki E, Şenel M. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem. 2015; 181: 277-83.
  • 32. Devi R, Yadav S, Pundir CS. Au-colloids–polypyrrole nanocomposite film based xanthine biosensor. Colloids Surf. A Physicochem. Eng. Asp. 2012; 394: 38-45.
  • 33. Gao Y, Shen C, Di J, Tu Y. Fabrication of amperometric xanthine biosensors based on direct chemistry of xanthine oxidase, Mater. Sci. Eng. C 2009; 29: 2213–6.
  • 34. Bas S.Z, Gulce H, Yıldız S. Amperometric xanthine biosensors based on electrodeposition of platinum on polyvinylferrocenium coated Pt electrode, J. Mol. Catal. B: Enzym 2011; 72: 282–8.
  • 35. Kalimuthu P, Leimkuhler S, Bernhardt P.V. Low-potential amperometric enzyme biosensor for xanthine and hypoxanthine, Anal. Chem. 2012; 84: 10359–65.
  • 36. Devi R, Yadav S, Nehra R, Yadav S, Pundir C.S. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat, J. Food Eng. 2013; 115: 207–14.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Berna Dalkıran

Ceren Kaçar

Pınar Esra Erden

Esma Kılıç

Publication Date September 1, 2017
Submission Date December 1, 2017
Acceptance Date January 19, 2018
Published in Issue Year 2018

Cite

Vancouver Dalkıran B, Kaçar C, Erden PE, Kılıç E. Electrochemical xanthine biosensor based on zinc oxide nanoparticles‒multiwalled carbon nanotubes‒1,4-benzoquinone composite. JOTCSA. 2017;5(1):317-32.