Research Article
BibTex RIS Cite
Year 2019, , 97 - 102, 15.06.2019
https://doi.org/10.18596/jotcsa.500355

Abstract

References

  • 1. Ram S, Kumari K, Kotnala R. Synthesis of norbergite Fe3BO6 of single crystallites from a borate glass. Transactions of the Indian Ceramic Society. 2010;69(3):165-70.
  • 2. Meydan E, Öztürk ÖF. Synthesis, Characterization, Magnetic Properties and Catalytic Performance of Iron Orthoborate. Asian Journal of Chemistry. 2016;28(6).
  • 3. Buchelnikov V, Danchin N, Dolgushin D, Isotov A, Shavrov V, Tsymbal L, et al. The magnetoacoustic anomaly in Fe3BO6. Journal of magnetism and magnetic materials. 2004;272:2113-4.
  • 4. Tsymbal L, Bazaliy YB, Bezmaternykh L, Slawska-Waniewska A, Vasiliev S, Nedelko N, et al. Orientation phase transition in Fe 3 BO 6: Experimental determination of the order of the transition. Physical Review B. 2006;74(13):134429.
  • 5. Kumari K. Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method. Journal of Advanced Dielectrics. 2017;7(06):1750043.
  • 6. Fernandes J, Guimarães R, Continentino M, Ziemath E, Walmsley L, Monteverde M, et al. Transport properties of the transverse charge-density-wave system Fe 3 O 2 BO 3. Physical Review B. 2005;72(7):075133.
  • 7. Kumari K. Phase analysis, FTIR/Raman, and optical properties of Fe3BO6 nanocrystallites prepared by glass route at moderate temperature in ambient air. Journal of Molecular Structure. 2018;1173:417-21.
  • 8. Beutier G, Ovchinnikova E, Collins S, Dmitrienko V-E, Lorenzo J-E, Hodeau J-L, et al. Interplay of inequivalent atomic positions in resonant x-ray diffraction of Fe3BO6. Journal of Physics: Condensed Matter. 2009;21(26):265402.
  • 9. Ibarra-Palos A, Darie C, Proux O, Hazemann J, Aldon L, Jumas J, et al. Electrochemical reactions of iron borates with lithium: Electrochemical and in situ Mössbauer and X-ray absorption studies. Chemistry of materials. 2002;14(3):1166-73.
  • 10. Rowsell J, Gaubicher J, Nazar L. A new class of materials for lithium-ion batteries: iron (III) borates. Journal of power sources. 2001;97:254-7.
  • 11. Tian J, Wang B, Zhao F, Ma X, Liu Y, Liu HK, et al. Highly active Fe 3 BO 6 as an anode material for sodium-ion batteries. Chemical Communications. 2017;53(34):4698-701.
  • 12. Shi X, Chang C, Xiang J, Xiao Y, Yuan L, Sun J. Synthesis of nanospherical Fe3BO6 anode material for lithium-ion battery by the rheological phase reaction method. Journal of Solid State Chemistry. 2008;181(9):2231-6.
  • 13. Li S, Xu L, Zhai Y, Yu H. Co-pyrolysis synthesis of Fe 3 BO 6 nanorods as high-performance anodes for lithium-ion batteries. RSC Advances. 2014;4(16):8245-9.
  • 14. Diehl R, Friedrich F. Growth of bulk single crystals of the weak ferromagnet Fe3BO6 by a vapor phase reaction. Journal of Crystal Growth. 1976;36(2):263-6.
  • 15. Kumari K. Structural, vibrational and surface analysis of Fe3BO6 nanoplates synthesized by combustion method. Journal of Molecular Structure. 2018;1165:293-8.
  • 16. Kumari K, Ram S, Kotnala R. Self-controlled growth of Fe3BO6 crystallites in shape of nanorods from iron-borate glass of small templates. Materials Chemistry and Physics. 2011;129(3):1020-6.
  • 17. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chemical reviews. 2016;116(23):14493-586.
  • 18. Baykan D, Oztas NA. Synthesis and characterization of iron orthophosphate by solution combustion method. Materials Research Bulletin. 2012;47(12):4013-6.
  • 19. Miranda EAC, Carvajal JFM, Baena OJR. Effect of the fuels Glycine, urea and citric acid on the synthesis of the ceramic pigment ZnCr2O4 by solution combustion. Materials Research. 2015;18(5):1038-43.
  • 20. Ozdemir A, Altunal V, Kurt K, Depci T, Yu Y, Lawrence Y, et al. Thermoluminescence properties of Li2B4O7: Cu, B phosphor synthesized using solution combustion technique. Radiation Physics and Chemistry. 2017;141:352-62. 21. Palaspagar R, Gawande A, Sonekar R, Omanwar S. Fluorescence properties of Tb3+ and Sm3+ activated novel LiAl7B4O17 host via solution combustion synthesis. Materials Research Bulletin. 2015;72:215-9.
  • 22. Khan Z, Ingale N, Omanwar S. Synthesis and thermoluminescence properties of rare-earth-doped NaMgBO3 phosphor. Environmental Science and Pollution Research. 2016;23(10):9295-302.
  • 23. Pathak P, Kurchania R. Study of thermo-luminescence properties of europium doped strontium borate phosphor exposed to Co-60 and photon beams (6 MV and 16 MV). Physica B: Condensed Matter. 2018.
  • 24. Onani MO, Okil JO, Dejene FB. Solution–combustion synthesis and photoluminescence properties of YBO3: Tb3+ phosphor powders. Physica B: Condensed Matter. 2014;439:133-6.
  • 25. Altuntaş Öztaş N, Erdoğan H. Synthesis and characterization of magnesium pyroborate by solution combustion and conventional ceramic methods: A comparative study. Zeitschrift für anorganische und Allgemeine Chemie. 2009;635(11):1626-32.
  • 26. Barpanda P, Yamashita Y, Chung S-C, Yamada Y, Nishimura S, Yamada A. Revisiting the Lithium Iron Borate (LiFeBO3) Cathode System: Synthetic and Electrochemical Findings. ECS Transactions. 2013;50(24):21-6.
  • 27. Jain S, Adiga K, Verneker VP. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combustion and flame. 1981;40:71-9.
  • 28. Xu G, Li L, Shen Z, Tao Z, Zhang Y, Tian H, et al. Magnetite Fe3O4 nanoparticles and hematite a-Fe2O3 uniform oblique hexagonal microdisks, drum-like particles and spindles, and their magnetic properties. Journal of Alloys and Compounds. 2015;629:35-42.
  • 29. Jiles D.C. Introduction to Magnetism and Magnetic Materials, ed. Chapman and Hall. 1998, New York.

Solution Combustion Synthesis of Iron Oxyborate (Fe3BO6)

Year 2019, , 97 - 102, 15.06.2019
https://doi.org/10.18596/jotcsa.500355

Abstract

In this study, iron oxyborate (Fe3BO6) was first synthesized through solution combustion method as a potential anode material for lithium-ion batteries. Urea, glycine, citric acid, carbohydrazide, hexamethylene tetramine, and starch were used as fuel sources and the effects of fuels were investigated. The obtained materials were structurally characterized by FT-IR, powder-XRD and solid UV-Vis. The pure crystalline Fe3BO6 was synthesized at low temperature and short reaction time using glycine assisted solution combustion method. It was thermally stable up to 945 °C with non-uniform morphology and a highly porous structure. The magnetic properties were also studied and Fe3BO6 show antiferromagnetic behavior.

References

  • 1. Ram S, Kumari K, Kotnala R. Synthesis of norbergite Fe3BO6 of single crystallites from a borate glass. Transactions of the Indian Ceramic Society. 2010;69(3):165-70.
  • 2. Meydan E, Öztürk ÖF. Synthesis, Characterization, Magnetic Properties and Catalytic Performance of Iron Orthoborate. Asian Journal of Chemistry. 2016;28(6).
  • 3. Buchelnikov V, Danchin N, Dolgushin D, Isotov A, Shavrov V, Tsymbal L, et al. The magnetoacoustic anomaly in Fe3BO6. Journal of magnetism and magnetic materials. 2004;272:2113-4.
  • 4. Tsymbal L, Bazaliy YB, Bezmaternykh L, Slawska-Waniewska A, Vasiliev S, Nedelko N, et al. Orientation phase transition in Fe 3 BO 6: Experimental determination of the order of the transition. Physical Review B. 2006;74(13):134429.
  • 5. Kumari K. Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method. Journal of Advanced Dielectrics. 2017;7(06):1750043.
  • 6. Fernandes J, Guimarães R, Continentino M, Ziemath E, Walmsley L, Monteverde M, et al. Transport properties of the transverse charge-density-wave system Fe 3 O 2 BO 3. Physical Review B. 2005;72(7):075133.
  • 7. Kumari K. Phase analysis, FTIR/Raman, and optical properties of Fe3BO6 nanocrystallites prepared by glass route at moderate temperature in ambient air. Journal of Molecular Structure. 2018;1173:417-21.
  • 8. Beutier G, Ovchinnikova E, Collins S, Dmitrienko V-E, Lorenzo J-E, Hodeau J-L, et al. Interplay of inequivalent atomic positions in resonant x-ray diffraction of Fe3BO6. Journal of Physics: Condensed Matter. 2009;21(26):265402.
  • 9. Ibarra-Palos A, Darie C, Proux O, Hazemann J, Aldon L, Jumas J, et al. Electrochemical reactions of iron borates with lithium: Electrochemical and in situ Mössbauer and X-ray absorption studies. Chemistry of materials. 2002;14(3):1166-73.
  • 10. Rowsell J, Gaubicher J, Nazar L. A new class of materials for lithium-ion batteries: iron (III) borates. Journal of power sources. 2001;97:254-7.
  • 11. Tian J, Wang B, Zhao F, Ma X, Liu Y, Liu HK, et al. Highly active Fe 3 BO 6 as an anode material for sodium-ion batteries. Chemical Communications. 2017;53(34):4698-701.
  • 12. Shi X, Chang C, Xiang J, Xiao Y, Yuan L, Sun J. Synthesis of nanospherical Fe3BO6 anode material for lithium-ion battery by the rheological phase reaction method. Journal of Solid State Chemistry. 2008;181(9):2231-6.
  • 13. Li S, Xu L, Zhai Y, Yu H. Co-pyrolysis synthesis of Fe 3 BO 6 nanorods as high-performance anodes for lithium-ion batteries. RSC Advances. 2014;4(16):8245-9.
  • 14. Diehl R, Friedrich F. Growth of bulk single crystals of the weak ferromagnet Fe3BO6 by a vapor phase reaction. Journal of Crystal Growth. 1976;36(2):263-6.
  • 15. Kumari K. Structural, vibrational and surface analysis of Fe3BO6 nanoplates synthesized by combustion method. Journal of Molecular Structure. 2018;1165:293-8.
  • 16. Kumari K, Ram S, Kotnala R. Self-controlled growth of Fe3BO6 crystallites in shape of nanorods from iron-borate glass of small templates. Materials Chemistry and Physics. 2011;129(3):1020-6.
  • 17. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chemical reviews. 2016;116(23):14493-586.
  • 18. Baykan D, Oztas NA. Synthesis and characterization of iron orthophosphate by solution combustion method. Materials Research Bulletin. 2012;47(12):4013-6.
  • 19. Miranda EAC, Carvajal JFM, Baena OJR. Effect of the fuels Glycine, urea and citric acid on the synthesis of the ceramic pigment ZnCr2O4 by solution combustion. Materials Research. 2015;18(5):1038-43.
  • 20. Ozdemir A, Altunal V, Kurt K, Depci T, Yu Y, Lawrence Y, et al. Thermoluminescence properties of Li2B4O7: Cu, B phosphor synthesized using solution combustion technique. Radiation Physics and Chemistry. 2017;141:352-62. 21. Palaspagar R, Gawande A, Sonekar R, Omanwar S. Fluorescence properties of Tb3+ and Sm3+ activated novel LiAl7B4O17 host via solution combustion synthesis. Materials Research Bulletin. 2015;72:215-9.
  • 22. Khan Z, Ingale N, Omanwar S. Synthesis and thermoluminescence properties of rare-earth-doped NaMgBO3 phosphor. Environmental Science and Pollution Research. 2016;23(10):9295-302.
  • 23. Pathak P, Kurchania R. Study of thermo-luminescence properties of europium doped strontium borate phosphor exposed to Co-60 and photon beams (6 MV and 16 MV). Physica B: Condensed Matter. 2018.
  • 24. Onani MO, Okil JO, Dejene FB. Solution–combustion synthesis and photoluminescence properties of YBO3: Tb3+ phosphor powders. Physica B: Condensed Matter. 2014;439:133-6.
  • 25. Altuntaş Öztaş N, Erdoğan H. Synthesis and characterization of magnesium pyroborate by solution combustion and conventional ceramic methods: A comparative study. Zeitschrift für anorganische und Allgemeine Chemie. 2009;635(11):1626-32.
  • 26. Barpanda P, Yamashita Y, Chung S-C, Yamada Y, Nishimura S, Yamada A. Revisiting the Lithium Iron Borate (LiFeBO3) Cathode System: Synthetic and Electrochemical Findings. ECS Transactions. 2013;50(24):21-6.
  • 27. Jain S, Adiga K, Verneker VP. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combustion and flame. 1981;40:71-9.
  • 28. Xu G, Li L, Shen Z, Tao Z, Zhang Y, Tian H, et al. Magnetite Fe3O4 nanoparticles and hematite a-Fe2O3 uniform oblique hexagonal microdisks, drum-like particles and spindles, and their magnetic properties. Journal of Alloys and Compounds. 2015;629:35-42.
  • 29. Jiles D.C. Introduction to Magnetism and Magnetic Materials, ed. Chapman and Hall. 1998, New York.
There are 28 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Demet Ozer

Okan Icten 0000-0002-1658-1685

Publication Date June 15, 2019
Submission Date December 21, 2018
Acceptance Date February 16, 2019
Published in Issue Year 2019

Cite

Vancouver Ozer D, Icten O. Solution Combustion Synthesis of Iron Oxyborate (Fe3BO6). JOTCSA. 2019;6(2):97-102.