Research Article
BibTex RIS Cite
Year 2019, , 303 - 310, 20.10.2019
https://doi.org/10.18596/jotcsa.535441

Abstract

References

  • 1. Kumar R, Mani G. Exhibition of the Brønsted acid–base character of a Schiff base in palladium(II) complex formation: lithium complexation, fluxional properties and catalysis of Suzuki reactions in water. Dalt Trans. 2015;44(15):6896–908.
  • 2. Nejati K, Rezvani Z, Massoumi B. Syntheses and investigation of thermal properties of copper complexes with azo-containing Schiff-base dyes. Dye Pigment. 2007;75(3):653–7.
  • 3. Ebenso EE, Isabirye DA, Eddy NO. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. Int J Mol Sci [Internet]. 2010;11(6):2473–98.
  • 4. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS. Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2-aminophenol. Bull Chem Soc Ethiop. 2011;25(3):407–17.
  • 5. Alshaheri AA, Tahir MIM, Rahman MBA, Begum T, Saleh TA. Synthesis, characterisation and catalytic activity of dithiocarbazate Schiff base complexes in oxidation of cyclohexane. J Mol Liq. 2017;240:486–96.
  • 6. Cuesta-Aluja L, Campos-Carrasco A, Castilla J, Reguero M, Masdeu-Bultó AM, Aghmiz A. Highly active and selective Zn(II)-NN′O Schiff base catalysts for the cycloaddition of CO2to epoxides. J CO2 Util [Internet]. 2016;14:10–22.
  • 7. Silku P, Özkinali S, Öztürk Z, Asan A, Köse DA. Synthesis of novel Schiff Bases containing acryloyl moiety and the investigation of spectroscopic and electrochemical properties. J Mol Struct. 2016;1116:72–83.
  • 8. Karaer H, Gümrükçüoǧlu IE. Synthesis and spectral characterisation of novel azo-azomethine dyes. Turkish J Chem. 1999;23(1):67–71.
  • 9. Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff Bases: A Versatile Pharmacophore. J Catal. 2013;2013:1–14.
  • 10. Dayakar C, Jyothi D, Suman P, Raju BC. Condensation of Ortho-phenylenediamines and Phenylhydrazines with Ethyl 4-Chloro-3-oxobutanoate: A Facile Approach for the Synthesis of Substituted 1 H-Benzimidazoles, Pyrazolones, and Pyrazoles. Synth Commun [Internet]. 2015;45(14):1642–51.
  • 11. Anush SM, Vishalakshi B, Kalluraya B, Manju N. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. Int J Biol Macromol [Internet]. 2018;119:446–52.
  • 12. Lv XH, Ren ZL, Li DD, Ruan BF, Li QS, Chu MJ, et al. Discovery of novel double pyrazole Schiff base derivatives as anti-tobacco mosaic virus (TMV) agents. Chinese Chem Lett [Internet]. 2017;28(2):377–82.
  • 13. Wazalwar SS, Banpurkar AR, Perdih F. Synthesis, Characterization, Molecular Docking Studies and Anticancer Activity of Schiff Bases Derived from 3-(Substituted phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde and 2-Aminophenol. J Chem Crystallogr [Internet]. 2018;48(4):185–99.
  • 14. del Mar Conejo M, Cantero J, Pastor A, Álvarez E, Galindo A. Synthesis, structure and properties of nickel and copper complexes containing N,O-hydrazone Schiff base ligand. Inorganica Chim Acta. 2018;470:113–8.
  • 15. Lapasam A, Dkhar L, Joshi N, Poluri KM, Kollipara MR. Antimicrobial selectivity of ruthenium, rhodium, and iridium half sandwich complexes containing phenyl hydrazone Schiff base ligands towards B. thuringiensis and P. aeruginosa bacteria. Inorganica Chim Acta [Internet]. 2019;484(August 2018):255–63.
  • 16. Abedinifar F, Farnia SMF, Mahdavi M, Nadri H, Moradi A, Ghasemi JB, et al. Synthesis and cholinesterase inhibitory activity of new 2-benzofuran carboxamide-benzylpyridinum salts. Bioorg Chem. 2018;80:180–8.
  • 17. Abbas-Mohammadi M, Moridi Farimani M, Salehi P, Nejad Ebrahimi S, Sonboli A, Kelso C, et al. Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. J Pharm Biomed Anal. 2018;158:471–9.
  • 18. Makhaeva GF, Boltneva NP, Lushchekina S V., Rudakova E V., Serebryakova OG, Kulikova LN, et al. Synthesis, molecular docking, and biological activity of 2-vinyl chromones: Toward selective butyrylcholinesterase inhibitors for potential Alzheimer’s disease therapeutics. Bioorganic Med Chem. 2018;26(16):4716–25.
  • 19. Andrade-Jorge E, Sánchez-Labastida LA, Soriano-Ursúa MA, Guevara-Salazar JA, Trujillo-Ferrara JG. Isoindolines/isoindoline-1,3-diones as AChE inhibitors against Alzheimer’s disease, evaluated by an improved ultra-micro assay. Med Chem Res. 2018;27(9):2187–98.
  • 20. Larik FA, Shah MS, Saeed A, Shah HS, Channar PA, Bolte M, et al. New cholinesterase inhibitors for Alzheimer’s disease: Structure activity relationship, kinetics and molecular docking studies of 1–butanoyl–3–arylthiourea derivatives. Int J Biol Macromol. 2018;116:144–50.
  • 21. Arumugam N, Almansour AI, Suresh Kumar R, Altaf M, Padmanaban R, Sureshbabu P, et al. Spiropyrrolidine/spiroindolizino[6,7-b]indole heterocyclic hybrids: Stereoselective synthesis, cholinesterase inhibitory activity and their molecular docking study. Bioorg Chem. 2018;79:64–71.
  • 22. Kilic B, Gulcan HO, Aksakal F, Ercetin T, Oruklu N, Umit Bagriacik E, et al. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase. Bioorg Chem. 2018;79:235–49.
  • 23. Senthil SL, Chandrasekaran R, Arjun HA, Anantharaman P. In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydr Polym. 2019;209:350–5.
  • 24. Ghaleb A, Aouidate A, Bouachrine M, Lakhlifi T, Sbai A. Discovery of Novel 1,2,3-Triazole Analogues as Anti-Tuberculosis agents Using 3D QSAR, Molecular Docking, and In Silico ADMET Screening. Anal Bioanal Chem Res. 2019;6(1):215–29.
  • 25. Almutairi MS, Leenaraj DR, Ghabbour HA, Joe IH, Attia MI. Spectroscopic identification, structural features, Hirshfeld surface analysis and molecular docking studies on stiripentol: An orphan antiepileptic drug. J Mol Struct. 2019;1180:110–8.
  • 26. Chen Y, Liu J, Geng S, Liu Y, Ma H, Zheng J, et al. Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chem. 2019;277:186–94.
  • 27. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1996;17(5–6):490–519.
  • 28. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–62.
  • 29. Solis FJ, Wets RJ-B. Minimization by Random Search Techniques. Math Oper Res. 1981;6(1):19–30.
  • 30. Spilovska K, Korabecny J, Kral J, Horova A, Musilek K, Soukup O, et al. 7-methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment - Synthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18(2):2397–418.

Synthesis, Characterization, and Molecular Docking Studies of Fluoro and Chlorophenylhydrazine Schiff Bases

Year 2019, , 303 - 310, 20.10.2019
https://doi.org/10.18596/jotcsa.535441

Abstract

Six Schiff bases synthesized by
condensation reaction of p-fluoro and chlorophenylhydrazines with some carbonyl
compounds were reported in this work. Structures of the prepared compounds were
elucidated by FT-IR, 1H- and 13C-NMR spectroscopy. FT-IR
spectra exhibited characteristic transitions for all compounds. Also, their
structures were proved by NMR spectroscopy, especially with the imine peak
which is an indicator of the formation of Schiff bases. In addition, molecular
docking studies of the Schiff bases were carried out on Alzheimer’s disease. The
calculated docking scores and inhibition constants pointed out the usage
probability of 2-chloro-5-nitrobenzaldehyde Schiff bases as a new drug
candidate for Alzheimer’s disease after structural regulations.

References

  • 1. Kumar R, Mani G. Exhibition of the Brønsted acid–base character of a Schiff base in palladium(II) complex formation: lithium complexation, fluxional properties and catalysis of Suzuki reactions in water. Dalt Trans. 2015;44(15):6896–908.
  • 2. Nejati K, Rezvani Z, Massoumi B. Syntheses and investigation of thermal properties of copper complexes with azo-containing Schiff-base dyes. Dye Pigment. 2007;75(3):653–7.
  • 3. Ebenso EE, Isabirye DA, Eddy NO. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. Int J Mol Sci [Internet]. 2010;11(6):2473–98.
  • 4. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS. Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2-aminophenol. Bull Chem Soc Ethiop. 2011;25(3):407–17.
  • 5. Alshaheri AA, Tahir MIM, Rahman MBA, Begum T, Saleh TA. Synthesis, characterisation and catalytic activity of dithiocarbazate Schiff base complexes in oxidation of cyclohexane. J Mol Liq. 2017;240:486–96.
  • 6. Cuesta-Aluja L, Campos-Carrasco A, Castilla J, Reguero M, Masdeu-Bultó AM, Aghmiz A. Highly active and selective Zn(II)-NN′O Schiff base catalysts for the cycloaddition of CO2to epoxides. J CO2 Util [Internet]. 2016;14:10–22.
  • 7. Silku P, Özkinali S, Öztürk Z, Asan A, Köse DA. Synthesis of novel Schiff Bases containing acryloyl moiety and the investigation of spectroscopic and electrochemical properties. J Mol Struct. 2016;1116:72–83.
  • 8. Karaer H, Gümrükçüoǧlu IE. Synthesis and spectral characterisation of novel azo-azomethine dyes. Turkish J Chem. 1999;23(1):67–71.
  • 9. Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff Bases: A Versatile Pharmacophore. J Catal. 2013;2013:1–14.
  • 10. Dayakar C, Jyothi D, Suman P, Raju BC. Condensation of Ortho-phenylenediamines and Phenylhydrazines with Ethyl 4-Chloro-3-oxobutanoate: A Facile Approach for the Synthesis of Substituted 1 H-Benzimidazoles, Pyrazolones, and Pyrazoles. Synth Commun [Internet]. 2015;45(14):1642–51.
  • 11. Anush SM, Vishalakshi B, Kalluraya B, Manju N. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. Int J Biol Macromol [Internet]. 2018;119:446–52.
  • 12. Lv XH, Ren ZL, Li DD, Ruan BF, Li QS, Chu MJ, et al. Discovery of novel double pyrazole Schiff base derivatives as anti-tobacco mosaic virus (TMV) agents. Chinese Chem Lett [Internet]. 2017;28(2):377–82.
  • 13. Wazalwar SS, Banpurkar AR, Perdih F. Synthesis, Characterization, Molecular Docking Studies and Anticancer Activity of Schiff Bases Derived from 3-(Substituted phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde and 2-Aminophenol. J Chem Crystallogr [Internet]. 2018;48(4):185–99.
  • 14. del Mar Conejo M, Cantero J, Pastor A, Álvarez E, Galindo A. Synthesis, structure and properties of nickel and copper complexes containing N,O-hydrazone Schiff base ligand. Inorganica Chim Acta. 2018;470:113–8.
  • 15. Lapasam A, Dkhar L, Joshi N, Poluri KM, Kollipara MR. Antimicrobial selectivity of ruthenium, rhodium, and iridium half sandwich complexes containing phenyl hydrazone Schiff base ligands towards B. thuringiensis and P. aeruginosa bacteria. Inorganica Chim Acta [Internet]. 2019;484(August 2018):255–63.
  • 16. Abedinifar F, Farnia SMF, Mahdavi M, Nadri H, Moradi A, Ghasemi JB, et al. Synthesis and cholinesterase inhibitory activity of new 2-benzofuran carboxamide-benzylpyridinum salts. Bioorg Chem. 2018;80:180–8.
  • 17. Abbas-Mohammadi M, Moridi Farimani M, Salehi P, Nejad Ebrahimi S, Sonboli A, Kelso C, et al. Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. J Pharm Biomed Anal. 2018;158:471–9.
  • 18. Makhaeva GF, Boltneva NP, Lushchekina S V., Rudakova E V., Serebryakova OG, Kulikova LN, et al. Synthesis, molecular docking, and biological activity of 2-vinyl chromones: Toward selective butyrylcholinesterase inhibitors for potential Alzheimer’s disease therapeutics. Bioorganic Med Chem. 2018;26(16):4716–25.
  • 19. Andrade-Jorge E, Sánchez-Labastida LA, Soriano-Ursúa MA, Guevara-Salazar JA, Trujillo-Ferrara JG. Isoindolines/isoindoline-1,3-diones as AChE inhibitors against Alzheimer’s disease, evaluated by an improved ultra-micro assay. Med Chem Res. 2018;27(9):2187–98.
  • 20. Larik FA, Shah MS, Saeed A, Shah HS, Channar PA, Bolte M, et al. New cholinesterase inhibitors for Alzheimer’s disease: Structure activity relationship, kinetics and molecular docking studies of 1–butanoyl–3–arylthiourea derivatives. Int J Biol Macromol. 2018;116:144–50.
  • 21. Arumugam N, Almansour AI, Suresh Kumar R, Altaf M, Padmanaban R, Sureshbabu P, et al. Spiropyrrolidine/spiroindolizino[6,7-b]indole heterocyclic hybrids: Stereoselective synthesis, cholinesterase inhibitory activity and their molecular docking study. Bioorg Chem. 2018;79:64–71.
  • 22. Kilic B, Gulcan HO, Aksakal F, Ercetin T, Oruklu N, Umit Bagriacik E, et al. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase. Bioorg Chem. 2018;79:235–49.
  • 23. Senthil SL, Chandrasekaran R, Arjun HA, Anantharaman P. In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydr Polym. 2019;209:350–5.
  • 24. Ghaleb A, Aouidate A, Bouachrine M, Lakhlifi T, Sbai A. Discovery of Novel 1,2,3-Triazole Analogues as Anti-Tuberculosis agents Using 3D QSAR, Molecular Docking, and In Silico ADMET Screening. Anal Bioanal Chem Res. 2019;6(1):215–29.
  • 25. Almutairi MS, Leenaraj DR, Ghabbour HA, Joe IH, Attia MI. Spectroscopic identification, structural features, Hirshfeld surface analysis and molecular docking studies on stiripentol: An orphan antiepileptic drug. J Mol Struct. 2019;1180:110–8.
  • 26. Chen Y, Liu J, Geng S, Liu Y, Ma H, Zheng J, et al. Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chem. 2019;277:186–94.
  • 27. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1996;17(5–6):490–519.
  • 28. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–62.
  • 29. Solis FJ, Wets RJ-B. Minimization by Random Search Techniques. Math Oper Res. 1981;6(1):19–30.
  • 30. Spilovska K, Korabecny J, Kral J, Horova A, Musilek K, Soukup O, et al. 7-methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment - Synthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18(2):2397–418.
There are 30 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Ayşegül Şenocak 0000-0001-9210-4621

Publication Date October 20, 2019
Submission Date March 4, 2019
Acceptance Date July 10, 2019
Published in Issue Year 2019

Cite

Vancouver Şenocak A. Synthesis, Characterization, and Molecular Docking Studies of Fluoro and Chlorophenylhydrazine Schiff Bases. JOTCSA. 2019;6(3):303-10.