Research Article
BibTex RIS Cite

The Effect of Polymer Capping Group to the Electrocatalytic Water Oxidation Activities of Prussian Blue Analogues

Year 2020, , 225 - 232, 15.02.2020
https://doi.org/10.18596/jotcsa.554229

Abstract

The Prussian Blue (PB) nanoparticles can be
obtained by reacting the hexacyanometal center with metal ions in the existence
of polymers such as polyethyleneglycol (PEG). In this study, a pentacyanometal
complex, [Fe(CN)5NO]2-, was used in addition to hexacyanometal
ion, [Fe(CN)6]3-, to obtain nanoparticles coated with
PEG. PB nanoparticles have been prepared, characterized, and comprehensive
electrochemical studies were performed to investigate their performance for
water oxidation electrocatalysis. The effect the ratio of PEG to the morphology
and the water oxidation electrocatalytic performance have also been
interrogated. Overall, the study clearly indicates that Co-FeNO@PEG with 1:10
and 1:25 Co:PEG rate show the best electrocatalytic activity with an overpotential
of 472 and 489 mV for current density of 1 mA cm-1, respectively.

Supporting Institution

TUBITAK

Project Number

1929B011500059

References

  • 1. Feng Y, Wei J, Ding Y. Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous Iron-Based Oxide Derived Metal-Organic Framework. J Phys Chem C. 2016;120:517–26.
  • 2. Zeng M, Wang H, Zhao C, Wei J, Wang W, Bai X. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiency water oxidation. Sci Bull. Science China Press; 2015;60(16):1426–33.
  • 3. Sala X, Romero I, Rodríguez M, Escriche L, Llobet A. Molecular catalysts that oxidize water to dioxygen. Angew Chemie - Int Ed. 2009;48(16):2842–52.
  • 4. Zou X, Su J, Silva R, Goswami A, Sathe BR, Asefa T. Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem Commun [Internet]. 2013;49:7522–4. Available from: http://xlink.rsc.org/?DOI=c3cc42891e
  • 5. Smith RDL, Prevot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science [Internet]. 2013;340(6128):60–3. Available from: http://pubs.acs.org/doi/abs/10.1021/cr100246c%5Cnhttp://www.sciencemag.org/cgi/doi/10.1126/science.1233638
  • 6. Surendranath Y, Dincǎ M, Nocera DG. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc [Internet]. 2009 Feb 25;131(7):2615–20. Available from: http://pubs.acs.org/doi/abs/10.1021/ja807769r
  • 7. Jung S, McCrory CCL, Ferrer IM, Peters JC, Jaramillo TF. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J Mater Chem A. The Royal Society of Chemistry; 2016;4(8):3068–76.
  • 8. Alsaç EP, Ülker E, Nune SVK, Dede Y, Karadas F. Tuning the Electronic Properties of Prussian Blue Analogues for Efficient Water Oxidation Electrocatalysis: Experimental and Computational Studies. Chem - A Eur J [Internet]. 2018 Jan 4 [cited 2018 Mar 8];24(19):4856–63. Available from: http://doi.wiley.com/10.1002/chem.201704933
  • 9. Pintado S, Goberna-ferro S, Escudero-ada EC. Fast and Persistent Electrocatalytic Water Oxidation by Co − Fe Prussian Blue Coordination Polymers. J Am Chem Soc. 2013;135:13270–3.
  • 10. May KJ, Carlton CE, Stoerzinger K a., Risch M, Suntivich J, Lee YL, et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett. 2012;3(22):3264–70.
  • 11. Kudo A, Kato H, Nakagawa S. Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures:  Factors Affecting the Photocatalytic Activity. J Phys Chem B. American Chemical Society; 2000;104(3):571–5.
  • 12. Xu L, Zhang F-T, Chen J-H, Fu X-Z, Sun R, Wong C-P. Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting. [cited 2018 May 8]; Available from: https://pubs.acs.org/doi/pdf/10.1021/acsaem.7b00313
  • 13. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, et al. Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution (Adv. Energy Mater, 2016, 6, 1502313, 10.1002/aenm.201502313). Adv Energy Mater. 2016;6(12):1502313.
  • 14. Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science [Internet]. American Association for the Advancement of Science; 2008 Aug 22 [cited 2016 Mar 29];321:1072–5. Available from: http://science.sciencemag.org/content/321/5892/1072.abstract
  • 15. Xie L, Zhang R, Cui L, Liu D, Hao S, Ma Y, et al. High-Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angew Chemie Int Ed [Internet]. 2017 Jan 19 [cited 2017 Jan 16];56(4):1064–8. Available from: http://doi.wiley.com/10.1002/anie.201610776
  • 16. Surendranath Y, Kanan MW, Nocera DG. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc [Internet]. American Chemical Society; 2010 Nov 24 [cited 2016 Oct 27];132(46):16501–9. Available from: http://pubs.acs.org/doi/abs/10.1021/ja106102b
  • 17. Gonzalez-Flores D, Sanchez I, Zaharieva I, Klingan K, Heidkamp J, Chernev P, et al. Heterogeneous water oxidation: Surface activity versus amorphization activation in cobalt phosphate catalysts. Angew Chemie - Int Ed. 2015;54(8):2472–6.
  • 18. Han L, Tang P, Reyes-Carmona A, Rodriguez-Garcia B, Torrens M, Morante JR, et al. Enhanced activity and acid pH stability of Prussian blue-type oxygen evolution electrocatalysts processed by chemical etching. J Am Chem Soc [Internet]. 2016;138:16037–45. Available from: http://pubs.acs.org/doi/abs/10.1021/jacs.6b09778
  • 19. Karadaş F. Investigation of the ideal composition of metal hexacyanocobaltates with high. 2018;1–9.
  • 20. Perrier M, Kenouche S, Long J, Thangavel K, Larionova J, Goze-Bac C, et al. Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers. Inorg Chem. 2013;52(23):13402–14.
  • 21. Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc. 2003;125(26):7814–5.
  • 22. Uemura T, Ohba M, Kitagawa S. Size and surface effects of prussian blue nanoparticles protected by organic polymers. Inorg Chem. 2004;43(23):7339–45.
  • 23. Ma M, Qu F, Ji X, Liu D, Hao S, Du G, et al. Bimetallic Nickel-Substituted Cobalt-Borate Nanowire Array: An Earth-Abundant Water Oxidation Electrocatalyst with Superior Activity and Durability at Near Neutral pH. Small [Internet]. 2017 Jul 1 [cited 2018 Mar 10];13(25):1700394. Available from: http://doi.wiley.com/10.1002/smll.201700394
  • 24. Nune SVK, Basaran AT, Ülker E, Mishra R, Karadas F. Metal Dicyanamides as Efficient and Robust Water-Oxidation Catalysts. ChemCatChem. 2017;9(2):300–7.
  • 25. Sun Y, Liu C, Grauer DC, Yano J, Long JR, Yang P, et al. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J Am Chem Soc [Internet]. American Chemical Society; 2013 Nov 27 [cited 2016 Oct 18];135(47):17699–702. Available from: http://pubs.acs.org/doi/abs/10.1021/ja4094764
  • 26. Ahn HS, Tilley TD. Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 Anode. Adv Funct Mater. 2013;23(2):227–33.
  • 27. Aksoy M, Nune SVK, Karadas F. A Novel Synthetic Route for the Preparation of an Amorphous Co/Fe Prussian Blue Coordination Compound with High Electrocatalytic Water Oxidation Activity. Inorg Chem. 2016;55(9):4301–7.
  • 28. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci [Internet]. 2011 Jan [cited 2017 Jun 30];257(7):2717–30. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0169433210014170
  • 29. Ressnig D, Shalom M, Patscheider J, Moré R, Evangelisti F, Antonietti M, et al. Photochemical and electrocatalytic water oxidation activity of cobalt carbodiimide. J Mater Chem A [Internet]. 2015;3(9):5072–82. Available from: http://xlink.rsc.org/?DOI=C5TA00369E
  • 30. Liu X, Zheng H, Sun Z, Han A, Du P. Earth-abundant copper-based bifunctional electrocatalyst for both catalytic hydrogen production and water oxidation. ACS Catal. 2015;5:1530–8.
  • 31. Mishra R, Ülker E, Karadas F. One-Dimensional Copper(II) Coordination Polymer as an Electrocatalyst for Water Oxidation. ChemElectroChem [Internet]. 2017;4(1):75–80. Available from: http://doi.wiley.com/10.1002/celc.201600518
Year 2020, , 225 - 232, 15.02.2020
https://doi.org/10.18596/jotcsa.554229

Abstract

Project Number

1929B011500059

References

  • 1. Feng Y, Wei J, Ding Y. Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous Iron-Based Oxide Derived Metal-Organic Framework. J Phys Chem C. 2016;120:517–26.
  • 2. Zeng M, Wang H, Zhao C, Wei J, Wang W, Bai X. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiency water oxidation. Sci Bull. Science China Press; 2015;60(16):1426–33.
  • 3. Sala X, Romero I, Rodríguez M, Escriche L, Llobet A. Molecular catalysts that oxidize water to dioxygen. Angew Chemie - Int Ed. 2009;48(16):2842–52.
  • 4. Zou X, Su J, Silva R, Goswami A, Sathe BR, Asefa T. Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem Commun [Internet]. 2013;49:7522–4. Available from: http://xlink.rsc.org/?DOI=c3cc42891e
  • 5. Smith RDL, Prevot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science [Internet]. 2013;340(6128):60–3. Available from: http://pubs.acs.org/doi/abs/10.1021/cr100246c%5Cnhttp://www.sciencemag.org/cgi/doi/10.1126/science.1233638
  • 6. Surendranath Y, Dincǎ M, Nocera DG. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc [Internet]. 2009 Feb 25;131(7):2615–20. Available from: http://pubs.acs.org/doi/abs/10.1021/ja807769r
  • 7. Jung S, McCrory CCL, Ferrer IM, Peters JC, Jaramillo TF. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J Mater Chem A. The Royal Society of Chemistry; 2016;4(8):3068–76.
  • 8. Alsaç EP, Ülker E, Nune SVK, Dede Y, Karadas F. Tuning the Electronic Properties of Prussian Blue Analogues for Efficient Water Oxidation Electrocatalysis: Experimental and Computational Studies. Chem - A Eur J [Internet]. 2018 Jan 4 [cited 2018 Mar 8];24(19):4856–63. Available from: http://doi.wiley.com/10.1002/chem.201704933
  • 9. Pintado S, Goberna-ferro S, Escudero-ada EC. Fast and Persistent Electrocatalytic Water Oxidation by Co − Fe Prussian Blue Coordination Polymers. J Am Chem Soc. 2013;135:13270–3.
  • 10. May KJ, Carlton CE, Stoerzinger K a., Risch M, Suntivich J, Lee YL, et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett. 2012;3(22):3264–70.
  • 11. Kudo A, Kato H, Nakagawa S. Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures:  Factors Affecting the Photocatalytic Activity. J Phys Chem B. American Chemical Society; 2000;104(3):571–5.
  • 12. Xu L, Zhang F-T, Chen J-H, Fu X-Z, Sun R, Wong C-P. Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting. [cited 2018 May 8]; Available from: https://pubs.acs.org/doi/pdf/10.1021/acsaem.7b00313
  • 13. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, et al. Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution (Adv. Energy Mater, 2016, 6, 1502313, 10.1002/aenm.201502313). Adv Energy Mater. 2016;6(12):1502313.
  • 14. Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science [Internet]. American Association for the Advancement of Science; 2008 Aug 22 [cited 2016 Mar 29];321:1072–5. Available from: http://science.sciencemag.org/content/321/5892/1072.abstract
  • 15. Xie L, Zhang R, Cui L, Liu D, Hao S, Ma Y, et al. High-Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angew Chemie Int Ed [Internet]. 2017 Jan 19 [cited 2017 Jan 16];56(4):1064–8. Available from: http://doi.wiley.com/10.1002/anie.201610776
  • 16. Surendranath Y, Kanan MW, Nocera DG. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc [Internet]. American Chemical Society; 2010 Nov 24 [cited 2016 Oct 27];132(46):16501–9. Available from: http://pubs.acs.org/doi/abs/10.1021/ja106102b
  • 17. Gonzalez-Flores D, Sanchez I, Zaharieva I, Klingan K, Heidkamp J, Chernev P, et al. Heterogeneous water oxidation: Surface activity versus amorphization activation in cobalt phosphate catalysts. Angew Chemie - Int Ed. 2015;54(8):2472–6.
  • 18. Han L, Tang P, Reyes-Carmona A, Rodriguez-Garcia B, Torrens M, Morante JR, et al. Enhanced activity and acid pH stability of Prussian blue-type oxygen evolution electrocatalysts processed by chemical etching. J Am Chem Soc [Internet]. 2016;138:16037–45. Available from: http://pubs.acs.org/doi/abs/10.1021/jacs.6b09778
  • 19. Karadaş F. Investigation of the ideal composition of metal hexacyanocobaltates with high. 2018;1–9.
  • 20. Perrier M, Kenouche S, Long J, Thangavel K, Larionova J, Goze-Bac C, et al. Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers. Inorg Chem. 2013;52(23):13402–14.
  • 21. Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc. 2003;125(26):7814–5.
  • 22. Uemura T, Ohba M, Kitagawa S. Size and surface effects of prussian blue nanoparticles protected by organic polymers. Inorg Chem. 2004;43(23):7339–45.
  • 23. Ma M, Qu F, Ji X, Liu D, Hao S, Du G, et al. Bimetallic Nickel-Substituted Cobalt-Borate Nanowire Array: An Earth-Abundant Water Oxidation Electrocatalyst with Superior Activity and Durability at Near Neutral pH. Small [Internet]. 2017 Jul 1 [cited 2018 Mar 10];13(25):1700394. Available from: http://doi.wiley.com/10.1002/smll.201700394
  • 24. Nune SVK, Basaran AT, Ülker E, Mishra R, Karadas F. Metal Dicyanamides as Efficient and Robust Water-Oxidation Catalysts. ChemCatChem. 2017;9(2):300–7.
  • 25. Sun Y, Liu C, Grauer DC, Yano J, Long JR, Yang P, et al. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J Am Chem Soc [Internet]. American Chemical Society; 2013 Nov 27 [cited 2016 Oct 18];135(47):17699–702. Available from: http://pubs.acs.org/doi/abs/10.1021/ja4094764
  • 26. Ahn HS, Tilley TD. Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 Anode. Adv Funct Mater. 2013;23(2):227–33.
  • 27. Aksoy M, Nune SVK, Karadas F. A Novel Synthetic Route for the Preparation of an Amorphous Co/Fe Prussian Blue Coordination Compound with High Electrocatalytic Water Oxidation Activity. Inorg Chem. 2016;55(9):4301–7.
  • 28. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci [Internet]. 2011 Jan [cited 2017 Jun 30];257(7):2717–30. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0169433210014170
  • 29. Ressnig D, Shalom M, Patscheider J, Moré R, Evangelisti F, Antonietti M, et al. Photochemical and electrocatalytic water oxidation activity of cobalt carbodiimide. J Mater Chem A [Internet]. 2015;3(9):5072–82. Available from: http://xlink.rsc.org/?DOI=C5TA00369E
  • 30. Liu X, Zheng H, Sun Z, Han A, Du P. Earth-abundant copper-based bifunctional electrocatalyst for both catalytic hydrogen production and water oxidation. ACS Catal. 2015;5:1530–8.
  • 31. Mishra R, Ülker E, Karadas F. One-Dimensional Copper(II) Coordination Polymer as an Electrocatalyst for Water Oxidation. ChemElectroChem [Internet]. 2017;4(1):75–80. Available from: http://doi.wiley.com/10.1002/celc.201600518
There are 31 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Emine Ülker 0000-0002-5496-8098

Project Number 1929B011500059
Publication Date February 15, 2020
Submission Date April 15, 2019
Acceptance Date December 9, 2019
Published in Issue Year 2020

Cite

Vancouver Ülker E. The Effect of Polymer Capping Group to the Electrocatalytic Water Oxidation Activities of Prussian Blue Analogues. JOTCSA. 2020;7(1):225-32.