Research Article
BibTex RIS Cite

Development of docking programs for Lomonosov supercomputer

Year 2020, , 259 - 276, 15.02.2020
https://doi.org/10.18596/jotcsa.634130

Abstract

The initial step of
the rational drug design pipeline extremely needs an increase in effectiveness.
This can be done using molecular modeling: docking and molecular dynamics.
Docking programs are popular now due to their simple idea, quickness and ease
of use. Nevertheless accuracy of these programs still leaves much to be desired
and discovery by chance and experimental screening still play an important
role. Docking performs ligand positioning in the target protein and estimates
the protein-ligand binding free energy. While in many cases positioning
accuracy of docking is satisfactory, the accuracy of binding energy
calculations is insufficient to perform the hit-to-lead optimization. The
accuracy depends on many approximations which are built into the respective
model. We show that all simplifications restricting docking accuracy can be withdrawn
and this can be done on the basis of modern supercomputer facilities allowing
to perform docking of one ligand using many thousand computing cores. We
describe in short the SOL docking program which is used during years for
virtual screening of large ligand databases using supercomputer resources of
LomonosovMoscow State University. SOL to some extent is organized similarly to
popular docking programs and reflects their limitations and advantages. We
present our supercomputer docking programs, FLM and SOL-P, developed over the
past 5 years for Lomonosov supercomputer of Moscow State University. These
programs are free of most important simplifications and their performance shows
the road map of the docking accuracy improvement. Some results of their
performance for very flexible ligand docking into the rigid protein and docking
of flexible ligands into the protein with some moveable protein atoms are
presented. The so-called quasi-docking approach 
combining a force field and quantum chemical methods is described and it
is shown that best docking accuracy is reached with the PM7 method and the
COSMO solvent model. 

Supporting Institution

Russian Science Foundation

Project Number

Agreement No. 15-11-00025-П

References

  • 1. Sulimov VB, Sulimov A V. Docking: Molecular modeling for drug discovery. Moscow: AINTELL; 2017. 348 (in Russian).
  • 2. Sadovnichii VA, Sulimov VB. Supercomputing technologies in medicine. In: Sadovnichii VA, Savin GI, Voevodin V V, editors. Supercomputing Technologies in Science. Moscow: Moscow University Publishing; 2009. p. 16–23.
  • 3. Sliwoski G, Kothiwale S, Meiler J, Lowe Jr. EW. Computational methods in drug discovery. Pharmacol Rev. 2013;66(1):334–95.
  • 4. Sulimov VB, Kutov DC, Sulimov A V. Advances in docking. Curr Med Chem. 2019;26(37):1–25.
  • 5. Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017/05/17. 2017;9(2):91–102.
  • 6. Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit. 2015/03/27. 2015;28(10):581–604.
  • 7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 1999/12/11. 2000;28(1):235–42.
  • 8. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, et al. DOCK 6: Impact of new features and current docking performance. J Comput Chem. 2015/04/29. 2015;36(15):1132–56.
  • 9. Brozell SR, Mukherjee S, Balius TE, Roe DR, Case DA, Rizzo RC. Evaluation of DOCK 6 as a pose generation and database enrichment tool. J Comput Aided Mol Des. 2012;26(6):749–73.
  • 10. Trager RE, Giblock P, Soltani S, Upadhyay AA, Rekapalli B, Peterson YK. Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures. Drug Discov Today. 2016/06/30. 2016;21(10):1672–80.
  • 11. Sulimov A V, Kutov DC, Katkova E V, Kondakova OA, Sulimov VB. Search for approaches to improving the calculation accuracy of the protein-ligand binding energy by docking. Russ Chem Bull. 2017;66(10):1913–24.
  • 12. Sulimov A V, Kutov DC, Oferkin I V, Katkova E V, Sulimov VB. Application of the docking program SOL for CSAR benchmark. J Chem Inf Model. 2013/07/09. 2013;53(8):1946–56.
  • 13. Romanov AN, Kondakova OA, Grigoriev F V, Sulimov A V, Luschekina S V, Martynov YB, et al. The SOL docking package for computer-aided drug design. Vol. 9, Numerical Methods and Programming. 2008. p. 213-233 (in Russian).
  • 14. Oferkin I V, Katkova E V, Sulimov A V, Kutov DC, Sobolev SI, Voevodin V V, et al. Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima. Adv Bioinformatics. 2015/12/23. 2015;2015:126858.
  • 15. Oferkin I V, Zheltkov DA, Tyrtyshnikov EE, Sulimov A V, Kutov DC, Sulimov VB. Evaluation of the docking algorithm based on tensor train global optimization. Bull South Ural State Univ Ser Math Model Program Comput Softw. 2015;8(4):83–99.
  • 16. Sulimov A V, Kutov DC, Sulimov VB. Parallel supercomputer docking program of the new generation: finding low energy minima spectrum. In: Voevodin V, Sobolev S, editors. 4th Russian Supercomputing Days. Moscow, Russia: Springer International Publishing; 2018. p. 314–30.
  • 17. Kutov DC, Sulimov A V, Sulimov VB. Supercomputer docking: Investigation of low energy minima of protein-ligand complexes. Supercomput Front Innov. 2018;5(3):134–7.
  • 18. Sulimov A V, Zheltkov DA, Oferkin I V, Kutov DC, Katkova E V, Tyrtyshnikov EE, et al. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms. Comput Struct Biotechnol J. 2017/04/06. 2017;15:275–85.
  • 19. Sulimov A V, Zheltkov DA, Oferkin I V, Kutov DC, Katkova E V, Tyrtyshnikov EE, et al. Tensor train global optimization: Application to docking in the configuration space with a large number of dimensions. In: Voevodin V V, Sobolev SI, editors. 3rd Russian Supercomputing Days. Moscow, Russia: Springer International Publishing; 2017. p. 151–67.
  • 20. Sulimov V, Romanov A, Grigoriev F, Kondakova O, Sulimov A, Bryzgalov P, et al. Web-oriented system Keenbase for virtual screening and design of new ligands for biological macromolecules. Application for new drugs searches. Saint-Petersburg international workshop on nanobiotechnologies. Saint-Petersburg; 2006. p. 33–4.
  • 21. Halgren TA. Merck molecular force field. Vol. 17, Journal of Computational Chemistry. 1996. p. 490–641.
  • 22. Halgren TA. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem. 1999 May;20(7):730–48.
  • 23. Beachy MD, Chasman D, Murphy RB, Halgren TA, Friesner RA. Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields. J Am Chem Soc. 1997;119(25):5908–20.
  • 24. Forli S, Huey R, Pique ME, Sanner M, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905–19.
  • 25. Liebeschuetz JW, Cole JC, Korb O. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J Comput Aided Mol Des. 2012/05/10. 2012;26(6):737–48.
  • 26. Oferkin I V, Sulimov A V, Kondakova OA, Sulimov VB. Implementation of parallel computing for docking programs SOLGRID and SOL. Новые вычи. Vol. 12, Numerical Methods and Programming. 2011. p. 9-23 (in Russian).
  • 27. Voevodin V V, Antonov AS, Nikitenko DA, Shvets PA, Sobolev SI, Sidorov IY, et al. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput Front Innov. 2019;6(2):4–11.
  • 28. Damm-Ganamet KL, Smith RD, Dunbar Jr. JB, Stuckey JA, Carlson HA. CSAR Benchmark Exercise 2011−2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series,. J Chem Inf Model. 2013;53:1853–70.
  • 29. Sulimov VB, Romanov AN, Kondakova OA, Sinauridze EI, Butylin AA, Gribkova I V, et al. New thrombin inhibitors: Molecular design and experimental discovery. In: 5th Anniversary Congress of International Drug Discovery Science & Technology 2007, IDDST 2007, 7-13 November 2007. Xi’an, China; 2007. p. 145.
  • 30. Sinauridze EI, Romanov AN, Gribkova I V, Kondakova OA, Surov SS, Gorbatenko AS, et al. New synthetic thrombin inhibitors: Molecular design and experimental verification. PLoS One. 2011/05/24. 2011;6(5):e19969.
  • 31. Sulimov VB, Katkova E V, Oferkin I V, Sulimov A V, Romanov AN, Roschin AI, et al. Application of molecular modeling to urokinase inhibitors development. Biomed Res Int. 2014/06/27. 2014;2014:625176.
  • 32. Beloglazova IB, Plekhanova OS, Katkova E V, Rysenkova KD, Stambol’skii D V, Sulimov VB, et al. Molecular modeling as a new approach to the development of urokinase inhibitors. Bull Exp Biol Med. 2015;158(5):700–4.
  • 33. Sulimov VB, Gribkova I V, Kochugaeva MP, Katkova E V, Sulimov A V, Kutov DC, et al. Application of molecular modeling to development of new factor Xa inhibitors. Biomed Res Int. 2015/10/21. 2015;2015:120802.
  • 34. Ilin I, Lipets E, Sulimov A, Kutov D, Shikhaliev K, Potapov A, et al. New factor Xa inhibitors based on 1,2,3,4-tetrahydroquinoline developed by molecular modelling. J Mol Graph Model. 2019;89:215–24.
  • 35. Byrd R, Lu P, Nocedal J, Zhu C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J Sci Comput. 1995;16(5):1190–208.
  • 36. Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw. 1997;23(4):550–60.
  • 37. Sulimov VB, Mikhalev AY, Oferkin I V, Oseledets I V, Sulimov A V, Kutov DC, et al. Polarized continuum solvent model: Considerable acceleration with the multicharge matrix approximation. Int J Appl Eng Res. 2015;10(24):44815–30.
  • 38. Rezac J, Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J Chem Theory Comput. 2012/01/10. 2012;8(1):141–51.
  • 39. Stewart JJ. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2012/11/29. 2013;19(1):1–32.
  • 40. Sulimov A V, Kutov DC, Katkova E V, Sulimov VB. Combined docking with classical force field and quantum chemical semiempirical method PM7. Adv Bioinformatics. 2017/02/14. 2017;2017:7167691.
  • 41. Sulimov A V, Kutov DC, Katkova E V, Ilin IS, Sulimov VB. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking. J Mol Graph Model. 2017/10/23. 2017;78:139–47.
  • 42. Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2. 1993;(5):799–805.
  • 43. Stewart JJP. MOPAC2016. Colorado Springs, CO, USA: Stewart Computational Chemistry; 2016.
  • 44. Sulimov AV, Kutov DK, Il’in IS, Sulimov VB. Doking s kombinirovanniym primeneniev silovovo pola i kvantovo-himicheskovo metoda. Biomeditsinskaya himiya. 2019;65(2):80–5.
  • 45. Oseledets I, Tyrtyshnikov E. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions. SIAM J Sci Comput. 2009;31(5):3744–59.
  • 46. Oseledets I. Tensor-Train Decomposition. SIAM J Sci Comput. 2011;33(5):2295–317.
  • 47. Oseledets I, Tyrtyshnikov E. TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 2010;432(1):70–88.
  • 48. Goreinov S, Tyrtyshnikov E. The maximal-volume concept in approximation by low-rank matrices. Contemp Math. 2001;268:47–51.
  • 49. Zheltkov DA, Oferkin I V, Katkova E V, Sulimov A V, Sulimov VB, Tyrtyshnikov EE. TTDock: a docking method based on tensor train decompositions. Vol. 14, Numerical Methods and Programming. 2013. p. 279-291 (in Russian).
  • 50. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17.
  • 51. Sulimov A, Kutov D, Ilin I, Zheltkov D, Tyrtyshnikov E, Sulimov V. Supercomputer docking with a large number of degrees of freedom. SAR QSAR Environ Res. 2019;30(10):733–49.
  • 52. Brandt T, Holzmann N, Muley L, Khayat M, Wegscheid-Gerlach C, Baum B, et al. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties. J Mol Biol. 2011;405(5):1170—1187.
  • 53. Sadovnichy V, Tikhonravov A, Voevodin V, Opanasenko V. “Lomonosov”: Supercomputing at Moscow State University. In: Contemporary High Performance Computing: From Petascale toward Exascale. Boca Raton, United States: Boca Raton, United States; 2013. p. 283–307.
Year 2020, , 259 - 276, 15.02.2020
https://doi.org/10.18596/jotcsa.634130

Abstract

Project Number

Agreement No. 15-11-00025-П

References

  • 1. Sulimov VB, Sulimov A V. Docking: Molecular modeling for drug discovery. Moscow: AINTELL; 2017. 348 (in Russian).
  • 2. Sadovnichii VA, Sulimov VB. Supercomputing technologies in medicine. In: Sadovnichii VA, Savin GI, Voevodin V V, editors. Supercomputing Technologies in Science. Moscow: Moscow University Publishing; 2009. p. 16–23.
  • 3. Sliwoski G, Kothiwale S, Meiler J, Lowe Jr. EW. Computational methods in drug discovery. Pharmacol Rev. 2013;66(1):334–95.
  • 4. Sulimov VB, Kutov DC, Sulimov A V. Advances in docking. Curr Med Chem. 2019;26(37):1–25.
  • 5. Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017/05/17. 2017;9(2):91–102.
  • 6. Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit. 2015/03/27. 2015;28(10):581–604.
  • 7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 1999/12/11. 2000;28(1):235–42.
  • 8. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, et al. DOCK 6: Impact of new features and current docking performance. J Comput Chem. 2015/04/29. 2015;36(15):1132–56.
  • 9. Brozell SR, Mukherjee S, Balius TE, Roe DR, Case DA, Rizzo RC. Evaluation of DOCK 6 as a pose generation and database enrichment tool. J Comput Aided Mol Des. 2012;26(6):749–73.
  • 10. Trager RE, Giblock P, Soltani S, Upadhyay AA, Rekapalli B, Peterson YK. Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures. Drug Discov Today. 2016/06/30. 2016;21(10):1672–80.
  • 11. Sulimov A V, Kutov DC, Katkova E V, Kondakova OA, Sulimov VB. Search for approaches to improving the calculation accuracy of the protein-ligand binding energy by docking. Russ Chem Bull. 2017;66(10):1913–24.
  • 12. Sulimov A V, Kutov DC, Oferkin I V, Katkova E V, Sulimov VB. Application of the docking program SOL for CSAR benchmark. J Chem Inf Model. 2013/07/09. 2013;53(8):1946–56.
  • 13. Romanov AN, Kondakova OA, Grigoriev F V, Sulimov A V, Luschekina S V, Martynov YB, et al. The SOL docking package for computer-aided drug design. Vol. 9, Numerical Methods and Programming. 2008. p. 213-233 (in Russian).
  • 14. Oferkin I V, Katkova E V, Sulimov A V, Kutov DC, Sobolev SI, Voevodin V V, et al. Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima. Adv Bioinformatics. 2015/12/23. 2015;2015:126858.
  • 15. Oferkin I V, Zheltkov DA, Tyrtyshnikov EE, Sulimov A V, Kutov DC, Sulimov VB. Evaluation of the docking algorithm based on tensor train global optimization. Bull South Ural State Univ Ser Math Model Program Comput Softw. 2015;8(4):83–99.
  • 16. Sulimov A V, Kutov DC, Sulimov VB. Parallel supercomputer docking program of the new generation: finding low energy minima spectrum. In: Voevodin V, Sobolev S, editors. 4th Russian Supercomputing Days. Moscow, Russia: Springer International Publishing; 2018. p. 314–30.
  • 17. Kutov DC, Sulimov A V, Sulimov VB. Supercomputer docking: Investigation of low energy minima of protein-ligand complexes. Supercomput Front Innov. 2018;5(3):134–7.
  • 18. Sulimov A V, Zheltkov DA, Oferkin I V, Kutov DC, Katkova E V, Tyrtyshnikov EE, et al. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms. Comput Struct Biotechnol J. 2017/04/06. 2017;15:275–85.
  • 19. Sulimov A V, Zheltkov DA, Oferkin I V, Kutov DC, Katkova E V, Tyrtyshnikov EE, et al. Tensor train global optimization: Application to docking in the configuration space with a large number of dimensions. In: Voevodin V V, Sobolev SI, editors. 3rd Russian Supercomputing Days. Moscow, Russia: Springer International Publishing; 2017. p. 151–67.
  • 20. Sulimov V, Romanov A, Grigoriev F, Kondakova O, Sulimov A, Bryzgalov P, et al. Web-oriented system Keenbase for virtual screening and design of new ligands for biological macromolecules. Application for new drugs searches. Saint-Petersburg international workshop on nanobiotechnologies. Saint-Petersburg; 2006. p. 33–4.
  • 21. Halgren TA. Merck molecular force field. Vol. 17, Journal of Computational Chemistry. 1996. p. 490–641.
  • 22. Halgren TA. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem. 1999 May;20(7):730–48.
  • 23. Beachy MD, Chasman D, Murphy RB, Halgren TA, Friesner RA. Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields. J Am Chem Soc. 1997;119(25):5908–20.
  • 24. Forli S, Huey R, Pique ME, Sanner M, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905–19.
  • 25. Liebeschuetz JW, Cole JC, Korb O. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J Comput Aided Mol Des. 2012/05/10. 2012;26(6):737–48.
  • 26. Oferkin I V, Sulimov A V, Kondakova OA, Sulimov VB. Implementation of parallel computing for docking programs SOLGRID and SOL. Новые вычи. Vol. 12, Numerical Methods and Programming. 2011. p. 9-23 (in Russian).
  • 27. Voevodin V V, Antonov AS, Nikitenko DA, Shvets PA, Sobolev SI, Sidorov IY, et al. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput Front Innov. 2019;6(2):4–11.
  • 28. Damm-Ganamet KL, Smith RD, Dunbar Jr. JB, Stuckey JA, Carlson HA. CSAR Benchmark Exercise 2011−2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series,. J Chem Inf Model. 2013;53:1853–70.
  • 29. Sulimov VB, Romanov AN, Kondakova OA, Sinauridze EI, Butylin AA, Gribkova I V, et al. New thrombin inhibitors: Molecular design and experimental discovery. In: 5th Anniversary Congress of International Drug Discovery Science & Technology 2007, IDDST 2007, 7-13 November 2007. Xi’an, China; 2007. p. 145.
  • 30. Sinauridze EI, Romanov AN, Gribkova I V, Kondakova OA, Surov SS, Gorbatenko AS, et al. New synthetic thrombin inhibitors: Molecular design and experimental verification. PLoS One. 2011/05/24. 2011;6(5):e19969.
  • 31. Sulimov VB, Katkova E V, Oferkin I V, Sulimov A V, Romanov AN, Roschin AI, et al. Application of molecular modeling to urokinase inhibitors development. Biomed Res Int. 2014/06/27. 2014;2014:625176.
  • 32. Beloglazova IB, Plekhanova OS, Katkova E V, Rysenkova KD, Stambol’skii D V, Sulimov VB, et al. Molecular modeling as a new approach to the development of urokinase inhibitors. Bull Exp Biol Med. 2015;158(5):700–4.
  • 33. Sulimov VB, Gribkova I V, Kochugaeva MP, Katkova E V, Sulimov A V, Kutov DC, et al. Application of molecular modeling to development of new factor Xa inhibitors. Biomed Res Int. 2015/10/21. 2015;2015:120802.
  • 34. Ilin I, Lipets E, Sulimov A, Kutov D, Shikhaliev K, Potapov A, et al. New factor Xa inhibitors based on 1,2,3,4-tetrahydroquinoline developed by molecular modelling. J Mol Graph Model. 2019;89:215–24.
  • 35. Byrd R, Lu P, Nocedal J, Zhu C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J Sci Comput. 1995;16(5):1190–208.
  • 36. Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw. 1997;23(4):550–60.
  • 37. Sulimov VB, Mikhalev AY, Oferkin I V, Oseledets I V, Sulimov A V, Kutov DC, et al. Polarized continuum solvent model: Considerable acceleration with the multicharge matrix approximation. Int J Appl Eng Res. 2015;10(24):44815–30.
  • 38. Rezac J, Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J Chem Theory Comput. 2012/01/10. 2012;8(1):141–51.
  • 39. Stewart JJ. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2012/11/29. 2013;19(1):1–32.
  • 40. Sulimov A V, Kutov DC, Katkova E V, Sulimov VB. Combined docking with classical force field and quantum chemical semiempirical method PM7. Adv Bioinformatics. 2017/02/14. 2017;2017:7167691.
  • 41. Sulimov A V, Kutov DC, Katkova E V, Ilin IS, Sulimov VB. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking. J Mol Graph Model. 2017/10/23. 2017;78:139–47.
  • 42. Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2. 1993;(5):799–805.
  • 43. Stewart JJP. MOPAC2016. Colorado Springs, CO, USA: Stewart Computational Chemistry; 2016.
  • 44. Sulimov AV, Kutov DK, Il’in IS, Sulimov VB. Doking s kombinirovanniym primeneniev silovovo pola i kvantovo-himicheskovo metoda. Biomeditsinskaya himiya. 2019;65(2):80–5.
  • 45. Oseledets I, Tyrtyshnikov E. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions. SIAM J Sci Comput. 2009;31(5):3744–59.
  • 46. Oseledets I. Tensor-Train Decomposition. SIAM J Sci Comput. 2011;33(5):2295–317.
  • 47. Oseledets I, Tyrtyshnikov E. TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 2010;432(1):70–88.
  • 48. Goreinov S, Tyrtyshnikov E. The maximal-volume concept in approximation by low-rank matrices. Contemp Math. 2001;268:47–51.
  • 49. Zheltkov DA, Oferkin I V, Katkova E V, Sulimov A V, Sulimov VB, Tyrtyshnikov EE. TTDock: a docking method based on tensor train decompositions. Vol. 14, Numerical Methods and Programming. 2013. p. 279-291 (in Russian).
  • 50. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17.
  • 51. Sulimov A, Kutov D, Ilin I, Zheltkov D, Tyrtyshnikov E, Sulimov V. Supercomputer docking with a large number of degrees of freedom. SAR QSAR Environ Res. 2019;30(10):733–49.
  • 52. Brandt T, Holzmann N, Muley L, Khayat M, Wegscheid-Gerlach C, Baum B, et al. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties. J Mol Biol. 2011;405(5):1170—1187.
  • 53. Sadovnichy V, Tikhonravov A, Voevodin V, Opanasenko V. “Lomonosov”: Supercomputing at Moscow State University. In: Contemporary High Performance Computing: From Petascale toward Exascale. Boca Raton, United States: Boca Raton, United States; 2013. p. 283–307.
There are 53 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Vladimir Sulimov 0000-0002-7102-6107

İvan Ilin This is me 0000-0002-3612-393X

Danil Kutov This is me 0000-0002-4777-6522

Alexey Sulimov This is me 0000-0002-8767-642X

Project Number Agreement No. 15-11-00025-П
Publication Date February 15, 2020
Submission Date October 17, 2019
Acceptance Date December 25, 2019
Published in Issue Year 2020

Cite

Vancouver Sulimov V, Ilin İ, Kutov D, Sulimov A. Development of docking programs for Lomonosov supercomputer. JOTCSA. 2020;7(1):259-76.

Cited By