Research Article
BibTex RIS Cite
Year 2021, , 461 - 470, 31.05.2021
https://doi.org/10.18596/jotcsa.737622

Abstract

Project Number

114M121

References

  • 1. Nazir H, Batool M, Osorioc FJB, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Inamuddin, Kannan AM. Recent developments in phase change materials for energy storage applications: A review. Int J Heat and Mass Trans 2019;129:491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
  • 2. Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y. Latent Heat Thermal Energy Storage Systems with Solid–Liquid Phase Change Materials: A Review. Adv Eng Mater 2018;20(6):1-30. https://doi.org/10.1002/adem.201700753
  • 3. Du K, Calautit J, Wang Z, Wu Y, Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energ 2018;220:242-273. https://doi.org/10.1016/j.apenergy.2018.03.005
  • 4. Efimova A, Pinnau S, Mischke M, Breitkopf C, Ruck M, Schmid P. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling. Thermochim Acta 2014;575:276-278. https://doi.org/10.1016/j.tca.2013.11.011
  • 5. Cunha JP, Eame P. Thermal energy storage for low and medium temperature applications using phase change materials-A review. Appl Energ 2016;177:227-38. https://doi.org/10.1016/j.apenergy.2016.05.097
  • 6. Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation Technologies. Renew Sust Energ Rev 2015;48:373-91. https://doi.org/10.1016/j.rser.2015.04.044
  • 7. Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energ 2015;160:286-307. https://doi.org/10.1016/j.apenergy.2015.09.016
  • 8. Huang J, Wang T, Zhu P, Xiao J. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim Acta 2013;557:1-6. https://doi.org/10.1016/j.tca.2013.01.019
  • 9. Cabeza LF, Svensson G, Hiebler S, Mehling H. Thermal Performance of Sodium Acetate Trihydrate Thickened with Different Materials as Phase Change Energy Storage Material. Appl Therm Eng 2003;23:1697-704. https://doi.org/10.1016/S1359-4311(03)00107-8
  • 10. Zhang Y, Zhou G, Lin K, Zhang Q, Di H. Application of Latent Heat Thermal Energy Storage in Buildings: State-of-the-Art and Outlook. Build Environ 2007;42(6):2197–209. https://doi.org/10.1016/j.buildenv.2006.07.023
  • 11. Gök Ö, Yilmaz MÖ, Paksoy HÖ. Stabilization of Glauber's salt for latent heat storage online.. Proceedings of the 10th International Conference on Thermal Energy Storage, ECOSTOCK. June31 May – 22006. Available from: http://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PAPERS/4B-4.pdf
  • 12. Cabeza LF, Illa J, Roca J, Badia F, Mehling H, Hiebler S. Immersion corrosion tests on metal‐salt hydrate pairs used for latent heat storage in the 32 to 36°C temperature range. Mater Corrosion 2001;52(2):140-6. https://doi.org/10.1002/1521-4176(200102)52:2<140::AID-MACO140>3.0.CO;2-R
  • 13. Cabeza LF, Roca J, Nogués M, Mehling H, Hiebler S. Immersion corrosion tests on metal‐salt hydrate pairs used for latent heat storage in the 48 to 58 °C temperature range. Mater Corrosion 2002;53(12):902-7. https://doi.org/10.1002/maco.200290004
  • 14. Riffat S, Mempouo BM, Fang W. Phase change material developments: a review. Int J Ambient Energ  2013;36(3):102-15. https://doi.org/10.1080/01430750.2013.823106
  • 15. Saito A, Okawa S, Shintani T, Iwamoto R. On the heat removal characteristics and the analytical model of a thermal energy storage capsule using gelled Glauber’s salt as the PCM. Int J Heat and Mass Trans 2001;44:4693–701. https://doi.org/10.1016/S0017-9310(01)00113-2
  • 16. Biswas DR. Thermal energy storage using sodium sulfate decahydrate and water. Sol Energ 1977;19:99–100. https://escholarship.org/uc/item/59x1d2xv
  • 17. Marks S. An investigation of the thermal energy storage capacity of Glauber’s salt with respect to thermal cycling. Sol Energ 1980;25:255–8. https://doi.org/10.1016/0038-092X(80)90332-1
  • 18. Manikowski A, Koziol A, Czajkowska-Wojciechowska E. An alternative route for fondaparinux sodium synthesis via selective hydrogenations and sulfation of appropriate pentasaccharides Carbohydr Res 2012;361,155-61
  • 19. Nair V, Bernstein S. A convenient procedure for the preparation of triethylamine-sulfurtrioxide Organic Prep Proced Int, 1987;19:6,466-7. DOI: 10.1080/00304948709356213
  • 20. Gilbert EE. The Reactions of Sulfur Trioxide, and Its Adducts, with Organic Compounds. Chem Rev 1962;62(6):549-89. DOI: 10.1021/cr60220a003
  • 21. Alkan C, Aras L. Miscibility of polystyrene‐based ionomers with poly(2,6‐dibromo‐1,4phenylene oxide) J Appl Polym Sci 2001;82:3558-67.  https://doi.org/10.1002/app.2218
  • 22. Piccioni F, Giorgi I, Passaglia E, Ruggeri G, Aglietto M. Blending of styrene‐block‐butadiene‐block‐styrene copolymer with sulfonated vinyl aromatic polymers Polm Int 2001;50:714-21. https://doi.org/10.1002/pi.692
  • 23. ASTM‐E200–91, Standard Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis, 1991.
  • 24. Özkayalar S, Adıgüzel E, Alay Aksoy S, Alkan C. Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes, Mater Chem and Phys 2020;252,123162. https://doi.org/10.1016/j.matchemphys.2020.123162
  • 25. Alkan C, Günther E, Hiebler S, Himpel M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energ Conver Manage. 2012;64:364-70. https://doi.org/10.1016/j.enconman.2012.06.003

Sodium Neutralized Sulfated Polymers as Polymeric Salt Hydrates for Thermal Energy Storage

Year 2021, , 461 - 470, 31.05.2021
https://doi.org/10.18596/jotcsa.737622

Abstract

Salt hydrates are latent storage materials with exterior properies like energy storage density, availability and cost efficiency. However many of them have handicaps not overcome yet like irreversibility, corrosion and overcooling. In this work, it is aimed to produce polymeric based salt hydrates for the first time. For this reason some selected polymers (polyvinyl alcohol (PVA), poly(ethylene-co-acrylic acid) (PEAA) and polystyrene (PS) have been functionalized through chemical processes to impart salt clusters in the matrix consisting of some water together.
For sulfonation and sodium neutralization, known procedures at molecular basis have been used, as for the characterization, FTIR was exploited. Thermal characteristics; phase change temperature, enthalpies, specific heat values, phase change reversibility and total enthalpy have been determined using differential scanning calorimeter (DSC) technique. Furthermore, surface characteristic through contact angle measurements are considered as remarkable to monitor the change in the nature (hydrophobicity) of the polymeric system.

Supporting Institution

Tübitak

Project Number

114M121

Thanks

The author would like to acknowledge the support to INOTES project in the scope of EU ERA NET New Indigo Program funded by Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No: 114M121).

References

  • 1. Nazir H, Batool M, Osorioc FJB, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Inamuddin, Kannan AM. Recent developments in phase change materials for energy storage applications: A review. Int J Heat and Mass Trans 2019;129:491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
  • 2. Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y. Latent Heat Thermal Energy Storage Systems with Solid–Liquid Phase Change Materials: A Review. Adv Eng Mater 2018;20(6):1-30. https://doi.org/10.1002/adem.201700753
  • 3. Du K, Calautit J, Wang Z, Wu Y, Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energ 2018;220:242-273. https://doi.org/10.1016/j.apenergy.2018.03.005
  • 4. Efimova A, Pinnau S, Mischke M, Breitkopf C, Ruck M, Schmid P. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling. Thermochim Acta 2014;575:276-278. https://doi.org/10.1016/j.tca.2013.11.011
  • 5. Cunha JP, Eame P. Thermal energy storage for low and medium temperature applications using phase change materials-A review. Appl Energ 2016;177:227-38. https://doi.org/10.1016/j.apenergy.2016.05.097
  • 6. Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation Technologies. Renew Sust Energ Rev 2015;48:373-91. https://doi.org/10.1016/j.rser.2015.04.044
  • 7. Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energ 2015;160:286-307. https://doi.org/10.1016/j.apenergy.2015.09.016
  • 8. Huang J, Wang T, Zhu P, Xiao J. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim Acta 2013;557:1-6. https://doi.org/10.1016/j.tca.2013.01.019
  • 9. Cabeza LF, Svensson G, Hiebler S, Mehling H. Thermal Performance of Sodium Acetate Trihydrate Thickened with Different Materials as Phase Change Energy Storage Material. Appl Therm Eng 2003;23:1697-704. https://doi.org/10.1016/S1359-4311(03)00107-8
  • 10. Zhang Y, Zhou G, Lin K, Zhang Q, Di H. Application of Latent Heat Thermal Energy Storage in Buildings: State-of-the-Art and Outlook. Build Environ 2007;42(6):2197–209. https://doi.org/10.1016/j.buildenv.2006.07.023
  • 11. Gök Ö, Yilmaz MÖ, Paksoy HÖ. Stabilization of Glauber's salt for latent heat storage online.. Proceedings of the 10th International Conference on Thermal Energy Storage, ECOSTOCK. June31 May – 22006. Available from: http://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PAPERS/4B-4.pdf
  • 12. Cabeza LF, Illa J, Roca J, Badia F, Mehling H, Hiebler S. Immersion corrosion tests on metal‐salt hydrate pairs used for latent heat storage in the 32 to 36°C temperature range. Mater Corrosion 2001;52(2):140-6. https://doi.org/10.1002/1521-4176(200102)52:2<140::AID-MACO140>3.0.CO;2-R
  • 13. Cabeza LF, Roca J, Nogués M, Mehling H, Hiebler S. Immersion corrosion tests on metal‐salt hydrate pairs used for latent heat storage in the 48 to 58 °C temperature range. Mater Corrosion 2002;53(12):902-7. https://doi.org/10.1002/maco.200290004
  • 14. Riffat S, Mempouo BM, Fang W. Phase change material developments: a review. Int J Ambient Energ  2013;36(3):102-15. https://doi.org/10.1080/01430750.2013.823106
  • 15. Saito A, Okawa S, Shintani T, Iwamoto R. On the heat removal characteristics and the analytical model of a thermal energy storage capsule using gelled Glauber’s salt as the PCM. Int J Heat and Mass Trans 2001;44:4693–701. https://doi.org/10.1016/S0017-9310(01)00113-2
  • 16. Biswas DR. Thermal energy storage using sodium sulfate decahydrate and water. Sol Energ 1977;19:99–100. https://escholarship.org/uc/item/59x1d2xv
  • 17. Marks S. An investigation of the thermal energy storage capacity of Glauber’s salt with respect to thermal cycling. Sol Energ 1980;25:255–8. https://doi.org/10.1016/0038-092X(80)90332-1
  • 18. Manikowski A, Koziol A, Czajkowska-Wojciechowska E. An alternative route for fondaparinux sodium synthesis via selective hydrogenations and sulfation of appropriate pentasaccharides Carbohydr Res 2012;361,155-61
  • 19. Nair V, Bernstein S. A convenient procedure for the preparation of triethylamine-sulfurtrioxide Organic Prep Proced Int, 1987;19:6,466-7. DOI: 10.1080/00304948709356213
  • 20. Gilbert EE. The Reactions of Sulfur Trioxide, and Its Adducts, with Organic Compounds. Chem Rev 1962;62(6):549-89. DOI: 10.1021/cr60220a003
  • 21. Alkan C, Aras L. Miscibility of polystyrene‐based ionomers with poly(2,6‐dibromo‐1,4phenylene oxide) J Appl Polym Sci 2001;82:3558-67.  https://doi.org/10.1002/app.2218
  • 22. Piccioni F, Giorgi I, Passaglia E, Ruggeri G, Aglietto M. Blending of styrene‐block‐butadiene‐block‐styrene copolymer with sulfonated vinyl aromatic polymers Polm Int 2001;50:714-21. https://doi.org/10.1002/pi.692
  • 23. ASTM‐E200–91, Standard Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis, 1991.
  • 24. Özkayalar S, Adıgüzel E, Alay Aksoy S, Alkan C. Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes, Mater Chem and Phys 2020;252,123162. https://doi.org/10.1016/j.matchemphys.2020.123162
  • 25. Alkan C, Günther E, Hiebler S, Himpel M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energ Conver Manage. 2012;64:364-70. https://doi.org/10.1016/j.enconman.2012.06.003
There are 25 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Cemil Alkan 0000-0002-1509-4789

Elif Adıgüzel 0000-0001-5344-3428

Project Number 114M121
Publication Date May 31, 2021
Submission Date May 14, 2020
Acceptance Date February 28, 2021
Published in Issue Year 2021

Cite

Vancouver Alkan C, Adıgüzel E. Sodium Neutralized Sulfated Polymers as Polymeric Salt Hydrates for Thermal Energy Storage. JOTCSA. 2021;8(2):461-70.