Research Article
BibTex RIS Cite
Year 2021, , 535 - 552, 31.05.2021
https://doi.org/10.18596/jotcsa.856600

Abstract

References

  • 1. Gleria M, Jaeger RD, editors. Applicative aspects of cyclophosphazenes. New York: Nova Science Publishers; 2004. 371 p.
  • 2. Allcock HR. Chemistry and applications of polyphosphazenes [Internet]. Hoboken, N.J: Wiley-Interscience; 2003. 725 p. Available from: https://www.wiley.com/en-us/Chemistry+and+Applications+of+Polyphosphazenes-p-9780471443711
  • 3. Bowers DJ, Wright BD, Scionti V, Schultz A, Panzner MJ, Twum EB, et al. Structure and Conformation of the Medium-Sized Chlorophosphazene Rings. Inorg Chem. 2014 Sep 2;53(17):8874–86.
  • 4. Uslu A, Mutlu Balcı C, Yuksel F, Özcan E, Dural S, Beşli S. The investigation of thermosensitive properties of phosphazene derivatives bearing amino acid ester groups. J Mol Struct. 2017 May;1136:90–9.
  • 5. Liu X, Breon JP, Chen C, Allcock HR. Substituent exchange reactions of trimeric and tetrameric aryloxycyclophosphazenes with sodium 2,2,2-trifluoroethoxide. Dalton Trans. 2012;41(7):2100–9.
  • 6. Jiménez J, Callizo L, Serrano JL, Barberá J, Oriol L. Mixed-Substituent Cyclophosphazenes with Calamitic and Polycatenar Mesogens. Inorg Chem. 2017 Jul 17;56(14):7907–21.
  • 7. Kumar D, Singh N, Keshav K, Elias AJ. Ring-Closing Metathesis Reactions of Terminal Alkene-Derived Cyclic Phosphazenes. Inorg Chem. 2011 Jan 3;50(1):250–60.
  • 8. Mukundam V, Dhanunjayarao K, Mamidala R, Venkatasubbaiah K. Synthesis, characterization and aggregation induced enhanced emission properties of tetraaryl pyrazole decorated cyclophosphazenes. J Mater Chem C. 2016;4(16):3523–30.
  • 9. Allen CW, Brown DE, Worley SD. Synthesis and Spectroscopy of N 3 P 3 X 5 OCHCH 2 (X = Cl, F, OCH 3 , OCH 2 CF 3 , N(CH 3 ) 2 ) and N 3 P 3 X 4 (OCHCH 2 ) 2 (X = Cl, N(CH 3 ) 2 ). Correlations of Ultraviolet Photoelectron Spectroscopy and Nuclear Magnetic Resonance Data to Electronic and Geometrical Structure. Inorg Chem. 2000 Feb;39(4):810–4.
  • 10. Ainscough EW, Brodie AM, Davidson RJ, Moubaraki B, Murray KS, Otter CA, et al. Metal−Metal Communication in Copper(II) Complexes of Cyclotetraphosphazene Ligands. Inorg Chem. 2008 Oct 20;47(20):9182–92.
  • 11. Keshav K, Singh N, Elias AJ. Synthesis and Reactions of Ethynylferrocene-Derived Fluoro- and Chlorocyclotriphosphazenes. Inorg Chem. 2010 Jun 21;49(12):5753–65.
  • 12. Carriedo GA, García Alonso FJ, Gómez Elipe P, Brillas E, Labarta A, Juliá L. Macromolecular Polyradicals with Cyclic Triphosphazene as a Core. Spectral and Electrochemical Properties. J Org Chem. 2004 Jan;69(1):99–104.
  • 13. Liang W-J, Li Y-L, Zhao P-H, Zhao G-Z. Facile synthesis, spectroscopic characterization, and crystal structures of dioxybiphenyl bridged cyclotriphosphazenes. Polyhedron. 2017 Jun;129:30–7.
  • 14. Zhu X, Liang Y, Zhang D, Wang L, Ye Y, Zhao Y. Synthesis and Characterization of Side Group–Modified Cyclotetraphosphazene Derivatives. Phosphorus Sulfur Silicon Relat Elem. 2011 Jan 31;186(2):281–6.
  • 15. Okutan E, Çoşut B, Beyaz Kayıran S, Durmuş M, Kılıç A, Yeşilot S. Synthesis of a dendrimeric phenoxy-substituted cyclotetraphosphazene and its non-covalent interactions with multiwalled carbon nanotubes. Polyhedron. 2014 Jan;67:344–50.
  • 16. Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici A, Şimşek H, et al. Phosphorus–nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. New J Chem. 2016;40(6):5588–603.
  • 17. Akbaş H, Karadağ A, Destegül A, Çakırlar Ç, Yerli Y, Tekin KC, et al. Synthesis, and spectroscopic, thermal and dielectric properties of phosphazene based ionic liquids: OFET application and tribological behavior. New J Chem. 2019;43(5):2098–110.
  • 18. Beşli S, Mutlu Balcı C, Doğan S, Allen CW. Regiochemical Control in the Substitution Reactions of Cyclotriphosphazene Derivatives with Secondary Amines. Inorg Chem. 2018 Oct;57(19):12066–77.
  • 19. Yıldırım T, Şenkuytu E, Ergene E, Bilgin K, Uludağ Y, Çiftçi GY. Biological Activity of New Cyclophosphazene Derivatives Including Fluorenylidene-Bridged Cyclophosphazenes. ChemistrySelect. 2018 Sep 14;3(34):9933–9.
  • 20. Ün İ, İbişoğlu H, Kılıç A, Ün ŞŞ, Yuksel F. Nucleophilic substitution reactions of adamantane derivatives with cyclophosphazenes. Inorganica Chim Acta. 2012 May;387:226–33.
  • 21. Yenilmez Çiftçi G, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A. Fluorenylidene bridged cyclotriphosphazenes: ‘turn-off’ fluorescence probe for Cu2+ and Fe3+ ions. Dalton Trans. 2013;42(41):14916.
  • 22. Elmas (nee Egemen) G, Okumuş A, Kılıç Z, Hökelek T, Açık L, Dal H, et al. Phosphorus–Nitrogen Compounds. Part 24. Syntheses, Crystal Structures, Spectroscopic and Stereogenic Properties, Biological Activities, and DNA Interactions of Novel Spiro-ansa-spiro- and Ansa-spiro-ansa-cyclotetraphosphazenes. Inorg Chem. 2012 Dec 3;51(23):12841–56.
  • 23. Yıldırım T, Bilgin K, Çiftçi GY, Eçik ET, Şenkuytu E, Uludağ Y, et al. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. Eur J Med Chem. 2012 Jun;52:213–20.
  • 24. Çiftçi GY, Eçik ET, Yıldırım T, Bilgin K, Şenkuytu E, Yuksel F, et al. Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron. 2013 Feb;69(5):1454–61.
  • 25. Davarcı D, Beşli S, Demirbas E. Synthesis of a series of triple-bridged cyclotriphosphazene hexa-alkoxy derivatives and investigation of their structural and mesomorphic properties. Liq Cryst. 2013 May 1;40(5):624–31.
  • 26. Bolink HJ, Santamaria SG, Sudhakar S, Zhen C, Sellinger A. Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chem Commun. 2008;(5):618–20.
  • 27. Dell D, Fitzsimmons BW, Shaw RA. 752. Phosphorus–nitrogen compounds. Part XIII. Phenoxy- and p-bromophenoxy-chlorocyclotriphosphazatrienes. J Chem Soc. 1965;0(0):4070–3.
  • 28. Schmutz JL, Allcock HR. Phosphorus-nitrogen compounds. XXIII. Reaction of sodium 2,2,2-trifluoroethoxide with hexachlorocyclotriphosphazene. Inorg Chem. 1975 Oct;14(10):2433–8.
  • 29. Carter KR, Calichman M, Allen CW. Stereodirective Effects in Mixed Substituent Vinyloxycyclotriphosphazenes. Inorg Chem. 2009 Aug 3;48(15):7476–81.
  • 30. Nataro C, Myer CN, Cleaver WM, Allen CW. Synthesis and characterization of ferrocenylalcohol derivatives of hexachlorocyclotriphosphazene. X-ray crystal structure of N3P3Cl5OCH2CH2C5H4FeCp. J Organomet Chem. 2001 Dec;637–639:284–90.
  • 31. Coles SJ, Davies DB, Hursthouse MB, İbişoğlu H, Kılıç A, Shaw RA. 4,4,6,6-Tetrachloro-2-[(2,4-dimethylphenyl)sulfanyl]- N -[4-(2,2,4,4-tetrachloro-1,3,5,7,11-pentaaza-2λ 5 ,4λ 5 ,6λ 5 -triphosphaspiro[5.5]undeca-1,3,5-trien-7-yl)butyl]-1,3,5,2λ 5 ,4λ 5 ,6λ 5 -triazatriphosphinin-2-amine. Acta Crystallogr Sect E Struct Rep Online. 2007 Sep 15;63(9):o3753–o3753.
  • 32. İbişoğlu H, Dal H, Hökelek T, Kılıç A, Ün İ, Vardı S. The reaction of thiophenoxide with amino-substituted chloro-cyclotriphosphazenes. Polyhedron. 2009 Sep;28(14):2863–70.
  • 33. Carroll AP, Shaw RA. Phosphorus–nitrogen compounds. Part XXI. Alkylthio- and phenylthio-cyclotriphosphazatrienes. J Chem Soc A. 1966;0(0):914–21.
  • 34. Jung O-S, Park SH, Lee Y-A, Cho Y, Kim KM, Lee S, et al. Unique Intramolecular Interaction in Cyclotriphosphazene Molecule. Synthesis, Structure, and Properties of 1,1-Bis(pyridyl-2-thio)-3,3,5,5-tetrachlorocyclotriphosphazene. Inorg Chem. 1996 Jan;35(23):6899–901.
  • 35. Allen CW. Regio- and stereochemical control in substitution reactions of cyclophosphazenes. Chem Rev. 1991 Mar;91(2):119–35.
  • 36. Allcock HR. Recent advances in phosphazene (phosphonitrilic) chemistry. Chem Rev. 1972 Aug;72(4):315–56.
  • 37. İbişoğlu H, Güzel AM. Syntheses and characterizations of cyclotriphosphazenes containing 1-naphthyl derivatives. Polyhedron. 2015 Nov;100:139–45.
  • 38. Yenilmez Çiftçi G, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A. Structural and fluorescence properties of 2-naphthylamine substituted cyclotriphosphazenes. Inorganica Chim Acta. 2014 Nov;423:489–95.
  • 39. Çoşut B, Yeşilot S. Synthesis, thermal and photophysical properties of naphthoxycyclotriphosphazenyl-substituted dendrimeric cyclic phosphazenes. Polyhedron. 2012 Mar;35(1):101–7.
  • 40. Bruker AXS Inc. SADABS. Madison, WI, USA; 2005.
  • 41. Bruker AXS Inc. APEX2, version 2014.1-1. Madison, WI, USA; 2014.
  • 42. Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008 Jan 1;64(1):112–22.
  • 43. A.L.Spek. PLATON. Netherlands: Utrecht University, Padualaan 8, 3584 CH Utrecht;
  • 44. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008 Apr 1;41(2):466–70.
  • 45. Brandenburg, K., Berndt, M. Diamond. Bonn, Germany: Crystal impact Gb R; 1999.
  • 46. Çoşut B, Durmuş M, Kılıç A, Yeşilot S. Synthesis, thermal and photophysical properties of phenoxy-substituted dendrimeric cyclic phosphazenes. Inorganica Chim Acta. 2011 Jan;366(1):161–72.

2-Naphthylthio Cyclotriphosphazene Derivatives: Synthesis, Characterization, Crystallographic and Fluorescence Properties

Year 2021, , 535 - 552, 31.05.2021
https://doi.org/10.18596/jotcsa.856600

Abstract

In this study, new cyclotriphosphazene derivatives bearing 2-naphthylthio group were reported. The reactions of hexachlorocyclotriphosphazene (1) with 2-naphthalenethiol (2) were carried out with NaH base in tetrahydrofuran solution under inert (Ar) atmosphere in (1:2), (1:4) and (1:6) molar ratios. As a result of the reactions, bis geminal (3), tetrakis (4) and hexakis (5) 2-naphthylthio substituted cyclotriphosphazene derivatives formed and isolated. These new compounds were characterized with elemental analysis, mass (MALDI-TOF) analysis, 31P{H} and 1H NMR spectroscopies. The molecular structure of compound 3 was illuminated by single-crystal X-Ray diffraction technique. Furthermore, the fluorescence properties of the newly designed and synthesis compounds (3-5) were examined.

References

  • 1. Gleria M, Jaeger RD, editors. Applicative aspects of cyclophosphazenes. New York: Nova Science Publishers; 2004. 371 p.
  • 2. Allcock HR. Chemistry and applications of polyphosphazenes [Internet]. Hoboken, N.J: Wiley-Interscience; 2003. 725 p. Available from: https://www.wiley.com/en-us/Chemistry+and+Applications+of+Polyphosphazenes-p-9780471443711
  • 3. Bowers DJ, Wright BD, Scionti V, Schultz A, Panzner MJ, Twum EB, et al. Structure and Conformation of the Medium-Sized Chlorophosphazene Rings. Inorg Chem. 2014 Sep 2;53(17):8874–86.
  • 4. Uslu A, Mutlu Balcı C, Yuksel F, Özcan E, Dural S, Beşli S. The investigation of thermosensitive properties of phosphazene derivatives bearing amino acid ester groups. J Mol Struct. 2017 May;1136:90–9.
  • 5. Liu X, Breon JP, Chen C, Allcock HR. Substituent exchange reactions of trimeric and tetrameric aryloxycyclophosphazenes with sodium 2,2,2-trifluoroethoxide. Dalton Trans. 2012;41(7):2100–9.
  • 6. Jiménez J, Callizo L, Serrano JL, Barberá J, Oriol L. Mixed-Substituent Cyclophosphazenes with Calamitic and Polycatenar Mesogens. Inorg Chem. 2017 Jul 17;56(14):7907–21.
  • 7. Kumar D, Singh N, Keshav K, Elias AJ. Ring-Closing Metathesis Reactions of Terminal Alkene-Derived Cyclic Phosphazenes. Inorg Chem. 2011 Jan 3;50(1):250–60.
  • 8. Mukundam V, Dhanunjayarao K, Mamidala R, Venkatasubbaiah K. Synthesis, characterization and aggregation induced enhanced emission properties of tetraaryl pyrazole decorated cyclophosphazenes. J Mater Chem C. 2016;4(16):3523–30.
  • 9. Allen CW, Brown DE, Worley SD. Synthesis and Spectroscopy of N 3 P 3 X 5 OCHCH 2 (X = Cl, F, OCH 3 , OCH 2 CF 3 , N(CH 3 ) 2 ) and N 3 P 3 X 4 (OCHCH 2 ) 2 (X = Cl, N(CH 3 ) 2 ). Correlations of Ultraviolet Photoelectron Spectroscopy and Nuclear Magnetic Resonance Data to Electronic and Geometrical Structure. Inorg Chem. 2000 Feb;39(4):810–4.
  • 10. Ainscough EW, Brodie AM, Davidson RJ, Moubaraki B, Murray KS, Otter CA, et al. Metal−Metal Communication in Copper(II) Complexes of Cyclotetraphosphazene Ligands. Inorg Chem. 2008 Oct 20;47(20):9182–92.
  • 11. Keshav K, Singh N, Elias AJ. Synthesis and Reactions of Ethynylferrocene-Derived Fluoro- and Chlorocyclotriphosphazenes. Inorg Chem. 2010 Jun 21;49(12):5753–65.
  • 12. Carriedo GA, García Alonso FJ, Gómez Elipe P, Brillas E, Labarta A, Juliá L. Macromolecular Polyradicals with Cyclic Triphosphazene as a Core. Spectral and Electrochemical Properties. J Org Chem. 2004 Jan;69(1):99–104.
  • 13. Liang W-J, Li Y-L, Zhao P-H, Zhao G-Z. Facile synthesis, spectroscopic characterization, and crystal structures of dioxybiphenyl bridged cyclotriphosphazenes. Polyhedron. 2017 Jun;129:30–7.
  • 14. Zhu X, Liang Y, Zhang D, Wang L, Ye Y, Zhao Y. Synthesis and Characterization of Side Group–Modified Cyclotetraphosphazene Derivatives. Phosphorus Sulfur Silicon Relat Elem. 2011 Jan 31;186(2):281–6.
  • 15. Okutan E, Çoşut B, Beyaz Kayıran S, Durmuş M, Kılıç A, Yeşilot S. Synthesis of a dendrimeric phenoxy-substituted cyclotetraphosphazene and its non-covalent interactions with multiwalled carbon nanotubes. Polyhedron. 2014 Jan;67:344–50.
  • 16. Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici A, Şimşek H, et al. Phosphorus–nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. New J Chem. 2016;40(6):5588–603.
  • 17. Akbaş H, Karadağ A, Destegül A, Çakırlar Ç, Yerli Y, Tekin KC, et al. Synthesis, and spectroscopic, thermal and dielectric properties of phosphazene based ionic liquids: OFET application and tribological behavior. New J Chem. 2019;43(5):2098–110.
  • 18. Beşli S, Mutlu Balcı C, Doğan S, Allen CW. Regiochemical Control in the Substitution Reactions of Cyclotriphosphazene Derivatives with Secondary Amines. Inorg Chem. 2018 Oct;57(19):12066–77.
  • 19. Yıldırım T, Şenkuytu E, Ergene E, Bilgin K, Uludağ Y, Çiftçi GY. Biological Activity of New Cyclophosphazene Derivatives Including Fluorenylidene-Bridged Cyclophosphazenes. ChemistrySelect. 2018 Sep 14;3(34):9933–9.
  • 20. Ün İ, İbişoğlu H, Kılıç A, Ün ŞŞ, Yuksel F. Nucleophilic substitution reactions of adamantane derivatives with cyclophosphazenes. Inorganica Chim Acta. 2012 May;387:226–33.
  • 21. Yenilmez Çiftçi G, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A. Fluorenylidene bridged cyclotriphosphazenes: ‘turn-off’ fluorescence probe for Cu2+ and Fe3+ ions. Dalton Trans. 2013;42(41):14916.
  • 22. Elmas (nee Egemen) G, Okumuş A, Kılıç Z, Hökelek T, Açık L, Dal H, et al. Phosphorus–Nitrogen Compounds. Part 24. Syntheses, Crystal Structures, Spectroscopic and Stereogenic Properties, Biological Activities, and DNA Interactions of Novel Spiro-ansa-spiro- and Ansa-spiro-ansa-cyclotetraphosphazenes. Inorg Chem. 2012 Dec 3;51(23):12841–56.
  • 23. Yıldırım T, Bilgin K, Çiftçi GY, Eçik ET, Şenkuytu E, Uludağ Y, et al. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. Eur J Med Chem. 2012 Jun;52:213–20.
  • 24. Çiftçi GY, Eçik ET, Yıldırım T, Bilgin K, Şenkuytu E, Yuksel F, et al. Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron. 2013 Feb;69(5):1454–61.
  • 25. Davarcı D, Beşli S, Demirbas E. Synthesis of a series of triple-bridged cyclotriphosphazene hexa-alkoxy derivatives and investigation of their structural and mesomorphic properties. Liq Cryst. 2013 May 1;40(5):624–31.
  • 26. Bolink HJ, Santamaria SG, Sudhakar S, Zhen C, Sellinger A. Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chem Commun. 2008;(5):618–20.
  • 27. Dell D, Fitzsimmons BW, Shaw RA. 752. Phosphorus–nitrogen compounds. Part XIII. Phenoxy- and p-bromophenoxy-chlorocyclotriphosphazatrienes. J Chem Soc. 1965;0(0):4070–3.
  • 28. Schmutz JL, Allcock HR. Phosphorus-nitrogen compounds. XXIII. Reaction of sodium 2,2,2-trifluoroethoxide with hexachlorocyclotriphosphazene. Inorg Chem. 1975 Oct;14(10):2433–8.
  • 29. Carter KR, Calichman M, Allen CW. Stereodirective Effects in Mixed Substituent Vinyloxycyclotriphosphazenes. Inorg Chem. 2009 Aug 3;48(15):7476–81.
  • 30. Nataro C, Myer CN, Cleaver WM, Allen CW. Synthesis and characterization of ferrocenylalcohol derivatives of hexachlorocyclotriphosphazene. X-ray crystal structure of N3P3Cl5OCH2CH2C5H4FeCp. J Organomet Chem. 2001 Dec;637–639:284–90.
  • 31. Coles SJ, Davies DB, Hursthouse MB, İbişoğlu H, Kılıç A, Shaw RA. 4,4,6,6-Tetrachloro-2-[(2,4-dimethylphenyl)sulfanyl]- N -[4-(2,2,4,4-tetrachloro-1,3,5,7,11-pentaaza-2λ 5 ,4λ 5 ,6λ 5 -triphosphaspiro[5.5]undeca-1,3,5-trien-7-yl)butyl]-1,3,5,2λ 5 ,4λ 5 ,6λ 5 -triazatriphosphinin-2-amine. Acta Crystallogr Sect E Struct Rep Online. 2007 Sep 15;63(9):o3753–o3753.
  • 32. İbişoğlu H, Dal H, Hökelek T, Kılıç A, Ün İ, Vardı S. The reaction of thiophenoxide with amino-substituted chloro-cyclotriphosphazenes. Polyhedron. 2009 Sep;28(14):2863–70.
  • 33. Carroll AP, Shaw RA. Phosphorus–nitrogen compounds. Part XXI. Alkylthio- and phenylthio-cyclotriphosphazatrienes. J Chem Soc A. 1966;0(0):914–21.
  • 34. Jung O-S, Park SH, Lee Y-A, Cho Y, Kim KM, Lee S, et al. Unique Intramolecular Interaction in Cyclotriphosphazene Molecule. Synthesis, Structure, and Properties of 1,1-Bis(pyridyl-2-thio)-3,3,5,5-tetrachlorocyclotriphosphazene. Inorg Chem. 1996 Jan;35(23):6899–901.
  • 35. Allen CW. Regio- and stereochemical control in substitution reactions of cyclophosphazenes. Chem Rev. 1991 Mar;91(2):119–35.
  • 36. Allcock HR. Recent advances in phosphazene (phosphonitrilic) chemistry. Chem Rev. 1972 Aug;72(4):315–56.
  • 37. İbişoğlu H, Güzel AM. Syntheses and characterizations of cyclotriphosphazenes containing 1-naphthyl derivatives. Polyhedron. 2015 Nov;100:139–45.
  • 38. Yenilmez Çiftçi G, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A. Structural and fluorescence properties of 2-naphthylamine substituted cyclotriphosphazenes. Inorganica Chim Acta. 2014 Nov;423:489–95.
  • 39. Çoşut B, Yeşilot S. Synthesis, thermal and photophysical properties of naphthoxycyclotriphosphazenyl-substituted dendrimeric cyclic phosphazenes. Polyhedron. 2012 Mar;35(1):101–7.
  • 40. Bruker AXS Inc. SADABS. Madison, WI, USA; 2005.
  • 41. Bruker AXS Inc. APEX2, version 2014.1-1. Madison, WI, USA; 2014.
  • 42. Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008 Jan 1;64(1):112–22.
  • 43. A.L.Spek. PLATON. Netherlands: Utrecht University, Padualaan 8, 3584 CH Utrecht;
  • 44. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008 Apr 1;41(2):466–70.
  • 45. Brandenburg, K., Berndt, M. Diamond. Bonn, Germany: Crystal impact Gb R; 1999.
  • 46. Çoşut B, Durmuş M, Kılıç A, Yeşilot S. Synthesis, thermal and photophysical properties of phenoxy-substituted dendrimeric cyclic phosphazenes. Inorganica Chim Acta. 2011 Jan;366(1):161–72.
There are 46 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Ceylan Mutlu Balcı 0000-0003-3202-3808

Publication Date May 31, 2021
Submission Date January 8, 2021
Acceptance Date March 29, 2021
Published in Issue Year 2021

Cite

Vancouver Mutlu Balcı C. 2-Naphthylthio Cyclotriphosphazene Derivatives: Synthesis, Characterization, Crystallographic and Fluorescence Properties. JOTCSA. 2021;8(2):535-52.