Research Article
BibTex RIS Cite
Year 2021, , 623 - 632, 31.05.2021
https://doi.org/10.18596/jotcsa.870010

Abstract

Supporting Institution

İstanbul Teknik Üniversitesi

Thanks

İstanbul Teknik Üniversitesi

References

  • 1. Hanack M, Schneider T, Barthel M, Shirk JS, Flom SR, Pong RGS. Indium phthalocyanines and naphthalocyanines for optical limiting. Coord Chem Rev. 2001;219:235–58.
  • 2. Idowu M, Loewenstein T, Hastall A, Nyokong T, Schlettwein D. Photoelectrochemical properties of electrodeposited ZnO thin films sensitized by octacarboxymetallophthalocyanine derivatives. J Porphyr Phthalocyanines 2010;14:142–149.
  • 3. Staicu A, Pascu A, Nuta A, Sorescu A, Raditoiu V, Pascu ML. Studies about phthalocyanine photosensitizers to be used in photodynamic therapy. Rom Rep Phys. 2013;65: 1032–51.
  • 4. Jia X. Yang, FF, Li J, Liu JY, Xue JP. Synthesis and in vitro photodynamic activity of oligomeric ethylene glycol − quinoline substituted zinc(II) phthalocyanine derivatives. J Med Chem. 2013;56: 5797–5805.
  • 5. Ranyuk E, Cauchon N, Klarskov K, Gue B, van Lier JE. Phthalocyanine−peptide conjugates: receptor-targeting bifunctional agents for imaging and photodynamic therapy. J Med Chem. 2013; 56:1520–1534.
  • 6. Li X, Zheng BD, Peng XH, Li SZ, Ying JW, Zhao Y, Huang JD, Yoon J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord Chem Rev. 2019; 379:147-160.
  • 7. Zhao Y, Ying JW, Sun Q, Ke MR, Zheng BY, Huang JD. A novel silicon(IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy. Dye Pigment. 2020;172:107834.
  • 8. Korkmaz E, Ahmetali E, Atmaca GY, Karaoğlu HP, Erdoğmuş A, Koçak MB. Investigation of photophysical and photochemical properties of phthalocyanines bearing fluorinated groups. Monatshefte für Chemie. 2020;151:181–190.
  • 9. Yenilmez HY, Sevim AM, Bayır ZA. Synthesis and photophysics of new metallo phthalocyaninecomplexes with thiazole groups and their fluorescence quenchingstudies with benzoquinone. Synthetic Metals. 2013;176:11– 17.
  • 10. Özçeşmeci M, Baş SS, Akkurt B, Hamuryudan E, Bolkent Ş. Synthesis and Biological Uses of A3B Type Water-Soluble Phthalocyanine Alternate to Alcian Blue. ChemistrySelect. 2018;3,12805– 12812
  • 11. Uslan C, İşleyen ND, Öztürk Y, Yıldız BT, Çakar ZP, Göksele M, Durmus M¸ Gürsel YH, Sesalan BŞ. A novel of PEG-conjugated phthalocyanine and evaluation of its photocytotoxicity and antibacterial properties for photodynamic therapy. J. Porphyrins Phthalocyanines. 2018;22:10–24.
  • 12. Uğur AL, Dinçer HA, Erdoğmuş A. Synthesis, photophysical and thermal studies of symmetrical and unsymmetrical zinc phthalocyanines. Polyhedron. 2012;31:431–437.
  • 13. Sakamoto K, Sakaguchi Y, Watabiki S, Igarashi Y, Komoriya T, Yoshino S. Synthesis of phthalocyanines having thio-alkyl substituents at non-peripheral positions and their photochemical and photophysical properties. J. Med. Chem. Sci. 2019;2:64-70.
  • 14. Chen SX, Du SY, Wang YT, Zhao HC, Zhang YL, Yao L. Retinoic acid morpholine amide (RAMA) inhibits expression of Fas ligand through EP1 receptor in colon cancer cells. Tumor Biol. 2016; 37:323–329.
  • 15. Pal’chikov VA. Morpholines. Synthesis and Biological Activity. Russian Journal of Organic Chemistry, 2013;49(6):787–814.
  • 16. Poupin P, Mazure N, Truffaut N. Morpholine degradation by strain Mycobacterium aurum MOI : improvement of cells growth and morpholine degradation rate by cells immobilization. R.H. Wijffels, R.M. Buitelaar, C. Bucke and J. Tramper (Eds) Immobilized Cells: Basics and Applications, Elsevier Science B.V. 1996.
  • 17. Jachak GR, Ramesh R, Sant DG, Jorwekar SU, Jadhav MR, Tupe SG, Deshpande MV, Reddy DS. Silicon Incorporated Morpholine Antifungals: Design, Synthesis, and Biological Evaluation. ACS Med. Chem. Lett. 2015;6:1111−1116.
  • 18. Zhu YJ, Huang JD, Jiang XJ, Sun JC. Novel silicon phthalocyanines axially modified by morpholine: synthesis, complexation with serum protein and in vitro photodynamic activity. Inorg Chem Commun. 2006;9:473–477.
  • 19. Nene LC, Managa M, Nyokong T. Photo-physicochemical properties and in vitro photodynamic therapy activity of morpholine-substituted Zinc(II)-Phthalocyanines π-π stacked on biotinylated graphene quantum dots. Dye Pigment. 2019;165:488–498.
  • 20. Sindelo A, Kobayashi N, Kimura M, Nyokong T. Physicochemical and photodynamic antimicrobial chemotherapy activity of morpholine-substituted phthalocyanines: Effect of point of substitution and central metal. J Photochem Photobio A: Chemistry. 2019;374:58–67.
  • 21. Dlugaszewska J, Szczolko W, Koczorowski T, Skupin-Mrugalska P, Teubert A, Konopka K, Kucinska M, Murias M, Düzgüneş N, Mielcarek J, Goslinski T. Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N-methyl morpholiniumethoxy substituents in nonperipheral positions. J Inorg Biochem. 2017;172:67–79.
  • 22. Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, Wierzchowski M, Teubert A, Fedoruk-Wyszomirska A, Wyszko E, Gdaniec M, Kaczmarek M, Goslinski T, Mielcarek J, Muria M. Phthalocyanine derivatives possessing 2‑(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem. 2015;58:2240−2255.
  • 23. Zheng BY, Lin T, Yang HH, Huang JD. Photodynamic inactivation of Candida albicans sensitized by a series of novel axially di-substituted silicon (IV) phthalocyanines. Dye Pigment. 2013;96:547-553.
  • 24. Barut B, Demirbaş Ü, Şenocak A, Özel A, Kantekin H. Water soluble axially morpholine disubstituted silicon phthalocyanines: Synthesis, characterisation, DNA/BSA binding, DNA photocleavage properties. Synth Met. 2017;229:22–32.
  • 25. Biyiklioglu Z. Electrochemical and aggregation properties of newly synthesized dendritic axially morpholine-disubstituted silicon phthalocyanine, mono-substituted subphthalocyanine and their quaternized derivatives. Inorg Chem Commun. 2015;55:60–64.
  • 26. Burat AK, Koca A, Lewtak JP, Gryko DT. Synthesis, physicochemical properties and electrochemistry of morpholine-substituted phthalocyanines. J Porphyr Phthalocyanines. 2010;14:605-614.
  • 27. Burat AK, Koca A, Lewtak JP, Gryko DT. Preparation, electrochemistry and optical properties of unsymmetrical phthalocyanines bearing morpholine and tert-butylphenoxy substituents. Synth Met. 2011,161:1537-1545.
  • 28. Gurek AG, Bekaroglu O. Octakis (alkylthio)-substituted phthalocyanines and their interactions with silver (I) and palladium (II) ions. J Chem Soc Dalton Trans. 1994;1419-1423.
  • 29. Koçan H, Kaya K, Özçeşmeci İ, Sesalan BŞ, Göksel M, Durmuş M, Burat AK. Photophysicochemical, calf thymus DNA binding and in vitro photocytotoxicity properties of tetra‑morpholinoethoxy‑substituted phthalocyanines and their water‑soluble quaternized derivatives. J Biol Inorg Chem 2017;22:1251–1266.
  • 30. Karaoğlu HRP, Yenilmez HY, Koçak MB. Phthalocyanines formed from several precursors: synthesis, characterization, and comparative fluorescence and quinone quenching. Journal of Coordination Chemistry. 2018;71(15):2340-2357.
  • 31. Zorlu Y, Dumoulin F, Durmuş M, Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron. 2010; 66(17):3248-3258.
  • 32. Du H, Fuh RCA, Li J, Corkan LA, Lindsey JS. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry. Photochem. Photobiol. 1998;68:141-142.
  • 33. Rose J. Advanced Physico-chemical Experiments, first ed., Sir Isaac Pitman & Sons Ltd., London, 1964,257.
  • 34. Leznoff CC, Hall TW. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Lett. 1982;23:3023-3026.
  • 35. Erdem SS, Nesterova IV, Soper SA, Hammer RP. Solid-phase synthesis of asymmetrically substituted “AB3-type” phthalocyanines. J Org Chem. 2008;73:5003-5007.
  • 36. Kobayashi N, Kondo R, Nakajima S, Osa T. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. J Am Chem Soc. 1990;112:9640-9641.
  • 37. Kobayashi N, Ishizaki T, Ishii K, Konami H. Synthesis, spectroscopy, and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines, and compounds derived therefrom by ring expansion. J Am Chem Soc. 1999:121;9096-9110.
  • 38. Kalkan A, Koca A, Bayır ZA. Unsymmetrical phthalocyanines with alkynyl substituents. Polyhedron. 2004;23:3155–3162.
  • 39. Haas M, Liu SX, Kahnt A, Leiggener C, Guldi DM, Hauser A, Decurtins S. Photoinduced energy transfer processes within dyads of metallophthalocyanines compactly fused to a ruthenium(II) polypyridine chromophore. J Org Chem. 2007;72:7533-7543.
  • 40. Kimura T, Kanota N, Matsui K, Tanaka I, Tsuboi T, Takaguchi Y, Yomogita A, Wakahara T, Kuwahara S, Nagatsugi F, Akasaka T. Preparation and electrochemical and optical properties of unsymmetrically substituted phthalocyanines with one or two trithiole rings and related symmetric derivatives. Inorg Chem. 2008;47:3577-3583.
  • 41. Özçeşmeci M, Nar I, Hamuryudan E. Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese(III) phthalocyanines. Turk. J. Chem. 2014;38:1064-1072.
  • 42. McKeown NB, Li H, Helliwell M, J. Porphyr. Phthalocyanines. A non-planar, hexadeca-substituted, metal-free phthalocyanine. 2005;9(12):841-845.

Photophysical properties of a newly synthesized unsymmetrically substituted zinc phthalocyanine

Year 2021, , 623 - 632, 31.05.2021
https://doi.org/10.18596/jotcsa.870010

Abstract

A novel unsymmetrically substituted zinc phthalocyanine (ZnPc) containing six hexylthio units and a morpholinoethoxy group was synthesized and characterized. Statistical condensation reaction of two different phthalonitriles was used for the preparation of unsymmetrical ZnPc. The novel compound was purified using chromatographic methods with the help of high solubility differences of phthalonitrile derivatives. Characterization of the compound was achieved by using NMR, FT-IR, UV-Vis, and mass spectroscopic methods. The photophysical measurements were made in tetrahydrofuran (THF). Fluorescent quantum yield (ΦF) and fluorescence lifetime (τF) of unsymmetrical ZnPc were determined. Fluorescent quenching experiments were done by adding benzoquinone (BQ) in THF, and Stern-Volmer constant (Ksv) and quenching constant (kq) values were calculated.

References

  • 1. Hanack M, Schneider T, Barthel M, Shirk JS, Flom SR, Pong RGS. Indium phthalocyanines and naphthalocyanines for optical limiting. Coord Chem Rev. 2001;219:235–58.
  • 2. Idowu M, Loewenstein T, Hastall A, Nyokong T, Schlettwein D. Photoelectrochemical properties of electrodeposited ZnO thin films sensitized by octacarboxymetallophthalocyanine derivatives. J Porphyr Phthalocyanines 2010;14:142–149.
  • 3. Staicu A, Pascu A, Nuta A, Sorescu A, Raditoiu V, Pascu ML. Studies about phthalocyanine photosensitizers to be used in photodynamic therapy. Rom Rep Phys. 2013;65: 1032–51.
  • 4. Jia X. Yang, FF, Li J, Liu JY, Xue JP. Synthesis and in vitro photodynamic activity of oligomeric ethylene glycol − quinoline substituted zinc(II) phthalocyanine derivatives. J Med Chem. 2013;56: 5797–5805.
  • 5. Ranyuk E, Cauchon N, Klarskov K, Gue B, van Lier JE. Phthalocyanine−peptide conjugates: receptor-targeting bifunctional agents for imaging and photodynamic therapy. J Med Chem. 2013; 56:1520–1534.
  • 6. Li X, Zheng BD, Peng XH, Li SZ, Ying JW, Zhao Y, Huang JD, Yoon J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord Chem Rev. 2019; 379:147-160.
  • 7. Zhao Y, Ying JW, Sun Q, Ke MR, Zheng BY, Huang JD. A novel silicon(IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy. Dye Pigment. 2020;172:107834.
  • 8. Korkmaz E, Ahmetali E, Atmaca GY, Karaoğlu HP, Erdoğmuş A, Koçak MB. Investigation of photophysical and photochemical properties of phthalocyanines bearing fluorinated groups. Monatshefte für Chemie. 2020;151:181–190.
  • 9. Yenilmez HY, Sevim AM, Bayır ZA. Synthesis and photophysics of new metallo phthalocyaninecomplexes with thiazole groups and their fluorescence quenchingstudies with benzoquinone. Synthetic Metals. 2013;176:11– 17.
  • 10. Özçeşmeci M, Baş SS, Akkurt B, Hamuryudan E, Bolkent Ş. Synthesis and Biological Uses of A3B Type Water-Soluble Phthalocyanine Alternate to Alcian Blue. ChemistrySelect. 2018;3,12805– 12812
  • 11. Uslan C, İşleyen ND, Öztürk Y, Yıldız BT, Çakar ZP, Göksele M, Durmus M¸ Gürsel YH, Sesalan BŞ. A novel of PEG-conjugated phthalocyanine and evaluation of its photocytotoxicity and antibacterial properties for photodynamic therapy. J. Porphyrins Phthalocyanines. 2018;22:10–24.
  • 12. Uğur AL, Dinçer HA, Erdoğmuş A. Synthesis, photophysical and thermal studies of symmetrical and unsymmetrical zinc phthalocyanines. Polyhedron. 2012;31:431–437.
  • 13. Sakamoto K, Sakaguchi Y, Watabiki S, Igarashi Y, Komoriya T, Yoshino S. Synthesis of phthalocyanines having thio-alkyl substituents at non-peripheral positions and their photochemical and photophysical properties. J. Med. Chem. Sci. 2019;2:64-70.
  • 14. Chen SX, Du SY, Wang YT, Zhao HC, Zhang YL, Yao L. Retinoic acid morpholine amide (RAMA) inhibits expression of Fas ligand through EP1 receptor in colon cancer cells. Tumor Biol. 2016; 37:323–329.
  • 15. Pal’chikov VA. Morpholines. Synthesis and Biological Activity. Russian Journal of Organic Chemistry, 2013;49(6):787–814.
  • 16. Poupin P, Mazure N, Truffaut N. Morpholine degradation by strain Mycobacterium aurum MOI : improvement of cells growth and morpholine degradation rate by cells immobilization. R.H. Wijffels, R.M. Buitelaar, C. Bucke and J. Tramper (Eds) Immobilized Cells: Basics and Applications, Elsevier Science B.V. 1996.
  • 17. Jachak GR, Ramesh R, Sant DG, Jorwekar SU, Jadhav MR, Tupe SG, Deshpande MV, Reddy DS. Silicon Incorporated Morpholine Antifungals: Design, Synthesis, and Biological Evaluation. ACS Med. Chem. Lett. 2015;6:1111−1116.
  • 18. Zhu YJ, Huang JD, Jiang XJ, Sun JC. Novel silicon phthalocyanines axially modified by morpholine: synthesis, complexation with serum protein and in vitro photodynamic activity. Inorg Chem Commun. 2006;9:473–477.
  • 19. Nene LC, Managa M, Nyokong T. Photo-physicochemical properties and in vitro photodynamic therapy activity of morpholine-substituted Zinc(II)-Phthalocyanines π-π stacked on biotinylated graphene quantum dots. Dye Pigment. 2019;165:488–498.
  • 20. Sindelo A, Kobayashi N, Kimura M, Nyokong T. Physicochemical and photodynamic antimicrobial chemotherapy activity of morpholine-substituted phthalocyanines: Effect of point of substitution and central metal. J Photochem Photobio A: Chemistry. 2019;374:58–67.
  • 21. Dlugaszewska J, Szczolko W, Koczorowski T, Skupin-Mrugalska P, Teubert A, Konopka K, Kucinska M, Murias M, Düzgüneş N, Mielcarek J, Goslinski T. Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N-methyl morpholiniumethoxy substituents in nonperipheral positions. J Inorg Biochem. 2017;172:67–79.
  • 22. Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, Wierzchowski M, Teubert A, Fedoruk-Wyszomirska A, Wyszko E, Gdaniec M, Kaczmarek M, Goslinski T, Mielcarek J, Muria M. Phthalocyanine derivatives possessing 2‑(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem. 2015;58:2240−2255.
  • 23. Zheng BY, Lin T, Yang HH, Huang JD. Photodynamic inactivation of Candida albicans sensitized by a series of novel axially di-substituted silicon (IV) phthalocyanines. Dye Pigment. 2013;96:547-553.
  • 24. Barut B, Demirbaş Ü, Şenocak A, Özel A, Kantekin H. Water soluble axially morpholine disubstituted silicon phthalocyanines: Synthesis, characterisation, DNA/BSA binding, DNA photocleavage properties. Synth Met. 2017;229:22–32.
  • 25. Biyiklioglu Z. Electrochemical and aggregation properties of newly synthesized dendritic axially morpholine-disubstituted silicon phthalocyanine, mono-substituted subphthalocyanine and their quaternized derivatives. Inorg Chem Commun. 2015;55:60–64.
  • 26. Burat AK, Koca A, Lewtak JP, Gryko DT. Synthesis, physicochemical properties and electrochemistry of morpholine-substituted phthalocyanines. J Porphyr Phthalocyanines. 2010;14:605-614.
  • 27. Burat AK, Koca A, Lewtak JP, Gryko DT. Preparation, electrochemistry and optical properties of unsymmetrical phthalocyanines bearing morpholine and tert-butylphenoxy substituents. Synth Met. 2011,161:1537-1545.
  • 28. Gurek AG, Bekaroglu O. Octakis (alkylthio)-substituted phthalocyanines and their interactions with silver (I) and palladium (II) ions. J Chem Soc Dalton Trans. 1994;1419-1423.
  • 29. Koçan H, Kaya K, Özçeşmeci İ, Sesalan BŞ, Göksel M, Durmuş M, Burat AK. Photophysicochemical, calf thymus DNA binding and in vitro photocytotoxicity properties of tetra‑morpholinoethoxy‑substituted phthalocyanines and their water‑soluble quaternized derivatives. J Biol Inorg Chem 2017;22:1251–1266.
  • 30. Karaoğlu HRP, Yenilmez HY, Koçak MB. Phthalocyanines formed from several precursors: synthesis, characterization, and comparative fluorescence and quinone quenching. Journal of Coordination Chemistry. 2018;71(15):2340-2357.
  • 31. Zorlu Y, Dumoulin F, Durmuş M, Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron. 2010; 66(17):3248-3258.
  • 32. Du H, Fuh RCA, Li J, Corkan LA, Lindsey JS. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry. Photochem. Photobiol. 1998;68:141-142.
  • 33. Rose J. Advanced Physico-chemical Experiments, first ed., Sir Isaac Pitman & Sons Ltd., London, 1964,257.
  • 34. Leznoff CC, Hall TW. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Lett. 1982;23:3023-3026.
  • 35. Erdem SS, Nesterova IV, Soper SA, Hammer RP. Solid-phase synthesis of asymmetrically substituted “AB3-type” phthalocyanines. J Org Chem. 2008;73:5003-5007.
  • 36. Kobayashi N, Kondo R, Nakajima S, Osa T. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. J Am Chem Soc. 1990;112:9640-9641.
  • 37. Kobayashi N, Ishizaki T, Ishii K, Konami H. Synthesis, spectroscopy, and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines, and compounds derived therefrom by ring expansion. J Am Chem Soc. 1999:121;9096-9110.
  • 38. Kalkan A, Koca A, Bayır ZA. Unsymmetrical phthalocyanines with alkynyl substituents. Polyhedron. 2004;23:3155–3162.
  • 39. Haas M, Liu SX, Kahnt A, Leiggener C, Guldi DM, Hauser A, Decurtins S. Photoinduced energy transfer processes within dyads of metallophthalocyanines compactly fused to a ruthenium(II) polypyridine chromophore. J Org Chem. 2007;72:7533-7543.
  • 40. Kimura T, Kanota N, Matsui K, Tanaka I, Tsuboi T, Takaguchi Y, Yomogita A, Wakahara T, Kuwahara S, Nagatsugi F, Akasaka T. Preparation and electrochemical and optical properties of unsymmetrically substituted phthalocyanines with one or two trithiole rings and related symmetric derivatives. Inorg Chem. 2008;47:3577-3583.
  • 41. Özçeşmeci M, Nar I, Hamuryudan E. Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese(III) phthalocyanines. Turk. J. Chem. 2014;38:1064-1072.
  • 42. McKeown NB, Li H, Helliwell M, J. Porphyr. Phthalocyanines. A non-planar, hexadeca-substituted, metal-free phthalocyanine. 2005;9(12):841-845.
There are 42 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Ayfer Kalkan Burat 0000-0002-6916-3006

Hande Rezan Pekbelgin Karaoğlu 0000-0001-5145-0819

Publication Date May 31, 2021
Submission Date January 28, 2021
Acceptance Date April 30, 2021
Published in Issue Year 2021

Cite

Vancouver Kalkan Burat A, Pekbelgin Karaoğlu HR. Photophysical properties of a newly synthesized unsymmetrically substituted zinc phthalocyanine. JOTCSA. 2021;8(2):623-32.