BibTex RIS Cite

Synthesis and characterization of near-IR absorbing metal-free and zinc(II) phthalocyanines modified with aromatic azo groups

Year 2015, Volume: 2 Issue: 4, 32 - 41, 07.05.2015
https://doi.org/10.18596/jotcsa.23804

Abstract

Metal-free and zinc(II) phthalocyanine complexes bearing peripheral (E)-4-((2-hydroxynaphthalen-1-yl)diazenyl) units have been synthesized. Novel phthalonitrile derivative required for the preparation of phthalocyanine complexes was prepared by coupling 4-aminophthalonitrile and 2-naphthol. The structures of these new compounds were characterized by using elemental analyses, proton nuclear magnetic resonance, fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, fluorescence spectroscopy and mass spectrometry. In the UV-Vis spectra a broad absorption band appears for phthalocyanine complexes at around 450–500 nm resulting from azo-group introduced onto the phthalocyanine ring. The photophysical properties of metal-free and zinc(II) phthalocyanines were studied in tetrahydrofuran.

References

  • De la Torre G, Vázquez P, Agulló-López F, Torres T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. Journal of Materials Chemistry. 1998;8(8):1671–83. DOI: 10.1039/A803533D.
  • Harbeck M, Taşaltın C, Gürol I, Musluoğlu E, Ahsen V, Öztürk ZZ. Preferential sorption of polar compounds by fluoroalkyloxy substituted phthalocyanines for the use in sorption based gas sensors. Sensors and Actuators B: Chemical. 2010 Oct;150(2):616–24. DOI: 10.1016/j.snb.2010.08.031.
  • Koca A, Özçeşmeci M, Hamuryudan E. Substituents Effects to the Electrochemical, and In Situ Spectroelectrochemical Behavior of Metallophthalocyanines: Electrocatalytic Application for Hydrogen Evolution Reaction. Electroanalysis. 2010 Apr 22;22(14):1623–33. DOI: 10.1002/elan.200900545.
  • Leznoff CC, Lever ABP. Phthalocyanines: Properties and Applications, vols.1–4, VCH, Weinheim, 1998.
  • Ragoussi M-E, Yum J-H, Chandiran AK, Ince M, de la Torre G, Grätzel M, et al. Sterically Hindered Phthalocyanines for Dye-Sensitized Solar Cells: Influence of the Distance between the Aromatic Core and the Anchoring Group. ChemPhysChem. 2014 Apr 14;15(6):1033–6. DOI: 10.1002/cphc.201301118.
  • Horne TK, Abrahamse H, Cronjé MJ. Investigating the efficiency of novel metallo-phthalocyanine PDT-induced cell death in MCF-7 breast cancer cells. Photodiagnosis and Photodynamic Therapy. 2012 Sep;9(3):215–24. DOI:10.1016/j.pdpdt.2011.12.008
  • Burnham PM, Cook MJ, Gerrard LA, Heeney MJ, Hughes DL. Structural characterisation of a red phthalocyanine. Chemical Communications. 2003;(16):2064. DOI: 10.1039/B304173P.
  • Àlvarez Micó X, Vagin SI, Subramanian LR, Ziegler T, Hanack M. New Unsymmetrical Zinc-Phthalocyanine Conjugated with One Azo-Dye Moiety: Synthesis via Opening the Fused Triazole Ring and Spectral Properties. European Journal of Organic Chemistry. 2005 Oct;2005(20):4328–37. DOI: 10.1002/ejoc.200500237.
  • Güzel E, Atsay A, Nalbantoglu S, Şaki N, Dogan AL, Gül A, et al. Synthesis, characterization and photodynamic activity of a new amphiphilic zinc phthalocyanine. Dyes and Pigments. 2013 Apr;97(1):238–43. DOI:10.1016/j.dyepig.2012.12.027.
  • Uslan C, Şebnem Sesalan B. The synthesis, photochemical and biological properties of new silicon phthalocyanines. Inorganica Chimica Acta. 2013 Jan;394:353–62. DOI:10.1016/j.ica.2012.08.004.
  • Hunger K. Industrial Dyes: Chemistry, Properties, Wiley-VCH, Germany, Weinheim, 2003.
  • Hsueh C, Chen B. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. Journal of Hazardous Materials. 2007 Mar 22;141(3):842–9. DOI:10.1016/j.jhazmat.2006.07.056.
  • Egli R. Colour chemistry. In The design and Sythesis of Organic Dyes and Pigments, Peters AT, Freeman, HS. (Eds.), Elsevier, London (1991) 193–223.
  • Yenilmez HY, Okur Aİ, Gül A. Peripherally tetra-palladated phthalocyanines. Journal of Organometallic Chemistry. 2007 Feb;692(5):940–5. DOI: 10.1016/j.jorganchem.2006.10.044.
  • Yazıcı A, Ateş D, Bekaroğlu Ö, Kobayashi N. Synthesis and characterization of novel azo-bridged Zn(II) and Co(II) bisphthalocyanines. Journal of Porphyrins and Phthalocyanines. 2006 Sep;10(09):1140–4. DOI: 10.1142/S1088424606000491.
  • Liu Y, Lin H, Li X, Li J, Nan H. Photoinduced electron transfer in panchromatic zinc phthalocyanine–azobenzene dyad. Inorganic Chemistry Communications. 2010 Jan;13(1):187–90. DOI:10.1016/j.inoche.2009.11.012.
  • Özçeşmeci İ, Tekin A, Gül A. Synthesis and aggregation behavior of zinc phthalocyanines substituted with bulky naphthoxy and phenylazonaphthoxy groups: An experimental and theoretical study. Synthetic Metals. 2014 Mar;189:100–10. DOI:10.1016/j.synthmet.2014.01.003.
  • Makhseed S, Al-Sawah M, Samuel J, Manaa H. Synthesis, characterization and nonlinear optical properties of nonaggregating hexadeca-substituted phthalocyanines. Tetrahedron Letters. 2009 Jan;50(2):165–8. DOI:10.1016/j.tetlet.2008.10.102.
  • Valeur B. Molecular Fluorescence Principles and Applications, Wiley-VCH, Germany, Weinheim, 2002.
  • Özçeşmeci M, Özçeşmeci İ, Hamuryudan E. Synthesis and characterization of new polyfluorinated dendrimeric phthalocyanines. Polyhedron. 2010 Sep;29(13):2710–5. DOI: 10.1016/j.poly.2010.06.023.
  • Durmuş M, Bıyıklıoğlu Z, Kantekin H. Synthesis, photophysical and photochemical properties of crown ether substituted zinc phthalocyanines. Synthetic Metals. 2009 Aug;159(15-16):1563–71. DOI: 10.1016/j.poly.2010.06.023.
  • Gümrükçü G, Karaoğlan GK, Erdoğmuş A, Gül A, Avcıata U. A novel phthalocyanine conjugated with four salicylideneimino complexes: Photophysics and fluorescence quenching studies. Dyes and Pigments. 2012 Nov;95(2):280–9. DOI:10.1016/j.dyepig.2012.05.005.
  • Özçeşmeci İ, Güney O, Okur Aİ, Gül A. New phthalocyanines containing bulky electron rich substituents. Journal of Porphyrins and Phthalocyanines. 2009 Jun;13(06):753–9. DOI: 10.1142/S1088424609000838.
  • Göl C, Durmuş M. Investigation of photophysical, photochemical and bovine serum albumin binding properties of novel water-soluble zwitterionic zinc phthalocyanine complexes. Synthetic Metals. 2012 May;162(7-8):605–13. DOI: 10.1016/j.synthmet.2012.02.017.
  • Ogunsipe A, Durmuş M, Atilla D, Gürek AG, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical studies on long chain zinc phthalocyanine derivatives. Synthetic Metals. 2008 Dec;158(21-24):839–47. DOI: 10.1016/j.synthmet.2008.06.007.
  • Scalise I, Durantini EN. Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorganic & Medicinal Chemistry. 2005 Apr;13(8):3037–45. DOI: 10.1016/j.bmc.2005.01.063.
  • Lakowicz JR. Principles of Fluorescence Spectroscopy, (3rd ed.) Springer, Berlin, 2006.
  • Masilela N, Nyokong T. Synthesis and physicochemical behavior of new low symmetry Ge, Ti and Sn phthalocyanines: Effect of central metal. Synthetic Metals. 2012 Dec;162(21-22):1839–45. DOI: 10.1016/j.synthmet.2012.07.028.
  • Özçeşmeci M. Synthesis, photophysical and photochemical properties of metal-free and zinc(II) phthalocyanines bearing α-naphtholbenzein units. Journal of Organometallic Chemistry. 2014 Sep;767:16–21. DOI: 10.1016/j.jorganchem.2014.05.015.

Aromatik azo grupları ile modifiye edilmiş, yakın-IR bölgede soğurma yapan metalsiz ve çinko(II) ftalosiyaninlerin sentezi ve karakterizasyonu

Year 2015, Volume: 2 Issue: 4, 32 - 41, 07.05.2015
https://doi.org/10.18596/jotcsa.23804

Abstract

Metal-free and zinc(II) phthalocyanine complexes bearing peripheral (E)-4-((2-hydroxynaphthalen-1-yl)diazenyl) units have been synthesized. Novel phthalonitrile derivative required for the preparation of phthalocyanine complexes was prepared by coupling 4-aminophthalonitrile and 2-naphthol. The structures of these new compounds were characterized by using elemental analyses, proton nuclear magnetic resonance, fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, fluorescence spectroscopy and mass spectrometry. In the UV-Vis spectra a broad absorption band appears for phthalocyanine complexes at around 450–500 nm resulting from azo-group introduced onto the phthalocyanine ring. The photophysical properties of metal-free and zinc(II) phthalocyanines were studied in tetrahydrofuran.

References

  • De la Torre G, Vázquez P, Agulló-López F, Torres T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. Journal of Materials Chemistry. 1998;8(8):1671–83. DOI: 10.1039/A803533D.
  • Harbeck M, Taşaltın C, Gürol I, Musluoğlu E, Ahsen V, Öztürk ZZ. Preferential sorption of polar compounds by fluoroalkyloxy substituted phthalocyanines for the use in sorption based gas sensors. Sensors and Actuators B: Chemical. 2010 Oct;150(2):616–24. DOI: 10.1016/j.snb.2010.08.031.
  • Koca A, Özçeşmeci M, Hamuryudan E. Substituents Effects to the Electrochemical, and In Situ Spectroelectrochemical Behavior of Metallophthalocyanines: Electrocatalytic Application for Hydrogen Evolution Reaction. Electroanalysis. 2010 Apr 22;22(14):1623–33. DOI: 10.1002/elan.200900545.
  • Leznoff CC, Lever ABP. Phthalocyanines: Properties and Applications, vols.1–4, VCH, Weinheim, 1998.
  • Ragoussi M-E, Yum J-H, Chandiran AK, Ince M, de la Torre G, Grätzel M, et al. Sterically Hindered Phthalocyanines for Dye-Sensitized Solar Cells: Influence of the Distance between the Aromatic Core and the Anchoring Group. ChemPhysChem. 2014 Apr 14;15(6):1033–6. DOI: 10.1002/cphc.201301118.
  • Horne TK, Abrahamse H, Cronjé MJ. Investigating the efficiency of novel metallo-phthalocyanine PDT-induced cell death in MCF-7 breast cancer cells. Photodiagnosis and Photodynamic Therapy. 2012 Sep;9(3):215–24. DOI:10.1016/j.pdpdt.2011.12.008
  • Burnham PM, Cook MJ, Gerrard LA, Heeney MJ, Hughes DL. Structural characterisation of a red phthalocyanine. Chemical Communications. 2003;(16):2064. DOI: 10.1039/B304173P.
  • Àlvarez Micó X, Vagin SI, Subramanian LR, Ziegler T, Hanack M. New Unsymmetrical Zinc-Phthalocyanine Conjugated with One Azo-Dye Moiety: Synthesis via Opening the Fused Triazole Ring and Spectral Properties. European Journal of Organic Chemistry. 2005 Oct;2005(20):4328–37. DOI: 10.1002/ejoc.200500237.
  • Güzel E, Atsay A, Nalbantoglu S, Şaki N, Dogan AL, Gül A, et al. Synthesis, characterization and photodynamic activity of a new amphiphilic zinc phthalocyanine. Dyes and Pigments. 2013 Apr;97(1):238–43. DOI:10.1016/j.dyepig.2012.12.027.
  • Uslan C, Şebnem Sesalan B. The synthesis, photochemical and biological properties of new silicon phthalocyanines. Inorganica Chimica Acta. 2013 Jan;394:353–62. DOI:10.1016/j.ica.2012.08.004.
  • Hunger K. Industrial Dyes: Chemistry, Properties, Wiley-VCH, Germany, Weinheim, 2003.
  • Hsueh C, Chen B. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. Journal of Hazardous Materials. 2007 Mar 22;141(3):842–9. DOI:10.1016/j.jhazmat.2006.07.056.
  • Egli R. Colour chemistry. In The design and Sythesis of Organic Dyes and Pigments, Peters AT, Freeman, HS. (Eds.), Elsevier, London (1991) 193–223.
  • Yenilmez HY, Okur Aİ, Gül A. Peripherally tetra-palladated phthalocyanines. Journal of Organometallic Chemistry. 2007 Feb;692(5):940–5. DOI: 10.1016/j.jorganchem.2006.10.044.
  • Yazıcı A, Ateş D, Bekaroğlu Ö, Kobayashi N. Synthesis and characterization of novel azo-bridged Zn(II) and Co(II) bisphthalocyanines. Journal of Porphyrins and Phthalocyanines. 2006 Sep;10(09):1140–4. DOI: 10.1142/S1088424606000491.
  • Liu Y, Lin H, Li X, Li J, Nan H. Photoinduced electron transfer in panchromatic zinc phthalocyanine–azobenzene dyad. Inorganic Chemistry Communications. 2010 Jan;13(1):187–90. DOI:10.1016/j.inoche.2009.11.012.
  • Özçeşmeci İ, Tekin A, Gül A. Synthesis and aggregation behavior of zinc phthalocyanines substituted with bulky naphthoxy and phenylazonaphthoxy groups: An experimental and theoretical study. Synthetic Metals. 2014 Mar;189:100–10. DOI:10.1016/j.synthmet.2014.01.003.
  • Makhseed S, Al-Sawah M, Samuel J, Manaa H. Synthesis, characterization and nonlinear optical properties of nonaggregating hexadeca-substituted phthalocyanines. Tetrahedron Letters. 2009 Jan;50(2):165–8. DOI:10.1016/j.tetlet.2008.10.102.
  • Valeur B. Molecular Fluorescence Principles and Applications, Wiley-VCH, Germany, Weinheim, 2002.
  • Özçeşmeci M, Özçeşmeci İ, Hamuryudan E. Synthesis and characterization of new polyfluorinated dendrimeric phthalocyanines. Polyhedron. 2010 Sep;29(13):2710–5. DOI: 10.1016/j.poly.2010.06.023.
  • Durmuş M, Bıyıklıoğlu Z, Kantekin H. Synthesis, photophysical and photochemical properties of crown ether substituted zinc phthalocyanines. Synthetic Metals. 2009 Aug;159(15-16):1563–71. DOI: 10.1016/j.poly.2010.06.023.
  • Gümrükçü G, Karaoğlan GK, Erdoğmuş A, Gül A, Avcıata U. A novel phthalocyanine conjugated with four salicylideneimino complexes: Photophysics and fluorescence quenching studies. Dyes and Pigments. 2012 Nov;95(2):280–9. DOI:10.1016/j.dyepig.2012.05.005.
  • Özçeşmeci İ, Güney O, Okur Aİ, Gül A. New phthalocyanines containing bulky electron rich substituents. Journal of Porphyrins and Phthalocyanines. 2009 Jun;13(06):753–9. DOI: 10.1142/S1088424609000838.
  • Göl C, Durmuş M. Investigation of photophysical, photochemical and bovine serum albumin binding properties of novel water-soluble zwitterionic zinc phthalocyanine complexes. Synthetic Metals. 2012 May;162(7-8):605–13. DOI: 10.1016/j.synthmet.2012.02.017.
  • Ogunsipe A, Durmuş M, Atilla D, Gürek AG, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical studies on long chain zinc phthalocyanine derivatives. Synthetic Metals. 2008 Dec;158(21-24):839–47. DOI: 10.1016/j.synthmet.2008.06.007.
  • Scalise I, Durantini EN. Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorganic & Medicinal Chemistry. 2005 Apr;13(8):3037–45. DOI: 10.1016/j.bmc.2005.01.063.
  • Lakowicz JR. Principles of Fluorescence Spectroscopy, (3rd ed.) Springer, Berlin, 2006.
  • Masilela N, Nyokong T. Synthesis and physicochemical behavior of new low symmetry Ge, Ti and Sn phthalocyanines: Effect of central metal. Synthetic Metals. 2012 Dec;162(21-22):1839–45. DOI: 10.1016/j.synthmet.2012.07.028.
  • Özçeşmeci M. Synthesis, photophysical and photochemical properties of metal-free and zinc(II) phthalocyanines bearing α-naphtholbenzein units. Journal of Organometallic Chemistry. 2014 Sep;767:16–21. DOI: 10.1016/j.jorganchem.2014.05.015.
There are 29 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mukaddes Özçeşmeci

Publication Date May 7, 2015
Submission Date April 9, 2015
Published in Issue Year 2015 Volume: 2 Issue: 4

Cite

Vancouver Özçeşmeci M. Synthesis and characterization of near-IR absorbing metal-free and zinc(II) phthalocyanines modified with aromatic azo groups. JOTCSA. 2015;2(4):32-41.