Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 4 Sayı: 2, 579 - 596, 02.05.2017
https://doi.org/10.18596/jotcsa.288284

Öz

Kaynakça

  • 1 A. Ali, S. Bhattacharya, DNA binders in clinical trials and chemotherapy, Bioorganic Med. Chem. 22 (2014) 4506–4521.
  • 2 M. Di Antonio, R. Rodriguez, S. Balasubramanian, Experimental approaches to identify cellular G-quadruplex structures and functions, Methods. 57 (2012) 84–92.
  • 3 H. Han, L.H. Hurley, G-quadruplex DNA: A potential target for anti-cancer drug design, Trends Pharmacol. Sci. 21 (2000) 136–142.
  • 4 A.J. Bhattacharjee, K. Ahluwalia, S. Taylor, O. Jin, J.M. Nicoludis, R. Buscaglia, et al., Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin, Biochimie. 93 (2011) 1297–1309.
  • 5 T.A. Brooks, L.H. Hurley, Targeting MYC Expression through G-Quadruplexes, Genes Cancer. 1 (2010) 641–649.
  • 6 D.S.H. Chan, H. Yang, M.H.T. Kwan, Z. Cheng, P. Lee, L.P. Bai, et al., Structure-based optimization of FDA-approved drug methylene blue as a c-myc G-quadruplex DNA stabilizer, Biochimie. 93 (2011) 1055–1064.
  • 7 V. Dapic, Biophysical and biological properties of quadruplex oligodeoxyribonucleotides, Nucleic Acids Res. 31 (2003) 2097–2107.
  • 8 J. Moon, J.H. Han, D.Y. Kim, M. Jung, S.K. Kim, Effects of deficient of the Hoogsteen base-pairs on the G-quadruplex stabilization and binding mode of a cationic porphyrin, Biochem. Biophys. Reports. 2 (2015) 1–7.
  • 9 E.W. White, Selective Recognition of Quadruplex DNA by Small Molecules by, (2006).
  • 10 T. Simonsson, G-quadruplex DNA structures - Variations on a theme, Biol. Chem. 382 (2001) 621–628.
  • 11 C. Gao, W. Zhang, S. He, S. Li, F. Liu, Y. Jiang, Synthesis and antiproliferative activity of 2,7-diamino l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives as potent telomeric G-quadruplex DNA ligands, Bioorg. Chem. 60 (2015) 30–36.
  • 12 A. De Cian, L. Lacroix, C. Douarre, N. Temime-Smaali, C. Trentesaux, J.-F. Riou, et al., Targeting telomeres and telomerase, Biochimie. 90 (2008) 131–155.
  • 13 L. Zhang, J. Huang, L. Ren, M. Bai, L. Wu, B. Zhai, et al., Synthesis and evaluation of cationic phthalocyanine derivatives as potential inhibitors of telomerase, Bioorganic Med. Chem. 16 (2008) 303–312.
  • 14 P. Charoenphol, H. Bermudez, Design and application of multifunctional DNA nanocarriers for therapeutic delivery, Acta Biomater. 10 (2014) 1683–1691.
  • 15 E. Yabaş, E. Bağda, E. Bağda, The water soluble ball-type phthalocyanine as new potential anticancer drugs, Dye. Pigment. 120 (2015) 220–227.
  • 16 G. De Torre, G. Bottari, U. Hahn, T. Torres, Functional Phthalocyanine Molecular Materials, 2010.
  • 17 A.Y. Tolbin, A. V. Ivanov, L.G. Tomilova, N.S. Zefirov, Preparation of 1,2-bis(3,4-dicyanophenoxymethyl)benzene and the binuclear zinc phthalocyanine derived from it, Mendeleev Commun. 12 (2002) 96–97.
  • 18 L. Hassani, F. Hakimian, E. Safaei, Spectroscopic investigation on the interaction of copper porphyrazines and phthalocyanine with human telomeric G-quadruplex DNA, Biophys. Chem. 187–188 (2014) 7–13.
  • 19 A.A. Salem, I.A. El Haty, I.M. Abdou, Y. Mu, Interaction of human telomeric G-quadruplex DNA with thymoquinone: A possible mechanism for thymoquinone anticancer effect., Biochim. Biophys. Acta. 1850 (2015) 329–42.
  • 20 H. Yaku, T. Murashima, H. Tateishi-Karimata, S.I. Nakano, D. Miyoshi, N. Sugimoto, Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition, Methods. 64 (2013) 19–27.
  • 21 V. Kumar, A. Sengupta, K. Gavvala, R.K. Koninti, P. Hazra, Spectroscopic and thermodynamic insights into the interaction between proflavine and human telomeric G-quadruplex DNA., J. Phys. Chem. B. 118 (2014) 11090–9.
  • 22 S. Neidle, M. a Read, G-quadruplexes as therapeutic targets., Biopolymers. 56 (2001) 195–208.
  • 23 S. Neidle, Genomic Quadruplexes as Therapeutic Targets, Ther. Appl. Quadruplex Nucleic Acids. (2012) 119–138.
  • 24 D. Ren iuk, I. Kejnovska, P. kolakova, K. Bedna ova, J. Motlova, M. Vorli kova, Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions, Nucleic Acids Res. 37 (2009) 6625–6634.
  • 25 H. a Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703–2707.
  • 26 H. Dezhampanah, T. Darvishzad, M. Aghazadeh, Thermodynamic and spectroscopic study on the binding of interaction anionic phthalocyanine with calf thymus DNA, Spectrosc. An Int. J. 26 (2011) 357–365.
  • 27 J. Jaumot, R. Gargallo, Experimental Methods for Studying the Interactions between G-Quadruplex Structures and Ligands, Curr. Pharm. Des. 18 (2012) 1900–1916.
  • 28 M. Sirajuddin, S. Ali, A. Badshah, Journal of Photochemistry and Photobiology B : Biology Drug – DNA interactions and their study by UV – Visible , fluorescence spectroscopies and cyclic voltametry, J. Photochem. Photobiol. B Biol. 124 (2013) 1–19.
  • 29 S. Paramasivan, I. Rujan, P.H. Bolton, Circular dichroism of quadruplex DNAs: Applications to structure, cation effects and ligand binding, Methods. 43 (2007) 324–331.
  • 30 M. Islam, S. Fujii, S. Sato, T. Okauchi, S. Takenaka, A Selective G-Quadruplex DNA-Stabilizing Ligand Based on a Cyclic Naphthalene Diimide Derivative, Molecules. 20 (2015) 10963–10979.
  • 31 Q. Guo, M. Lu, L. a Marky, N.R. Kallenbach, Interaction of the dye ethidium bromide with DNA containing guanine repeats., Biochemistry. 31 (1992) 2451–2455.
  • 32 F. Koeppel, J.F. Riou, a Laoui, P. Mailliet, P.B. Arimondo, D. Labit, et al., Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes., Nucleic Acids Res. 29 (2001) 1087–1096.

A versatile water soluble ball-type phthalocyanine as potential antiproliferative drug: the interaction with G-quadruplex formed from Tel 21 and cMYC

Yıl 2017, Cilt: 4 Sayı: 2, 579 - 596, 02.05.2017
https://doi.org/10.18596/jotcsa.288284

Öz

G-quadruplexes are biologically
important DNA conformations exist generally in guanine rich segments of DNA,
such as telomere and proto-oncogene.

The formation of
these secondary structures is thought to inhibit the expression of certain
genes, such as the inhibition of telomerase.
The
inhibition of telomerase and suppression of a specific gene expression are
important approaches for interruption of cancer cell's proliferation. In the
present study, the effect of a versatile water soluble ball-type phthalocyanine
on G-quadruplex formation and stabilization was investigated to demonstrate its
potential usage in cancer chemotherapy. Two important guanine rich oligomers,
cMYC and Tel 21 were used as G-quadruplex former sequence. To the best of our
knowledge, this is the first study about the interaction of a ball-type
phthalocyanine with G-quadruplex structures. 
The interactions of the compound with G-quadruplex molecules were
monitored spectrophotometrically. The structural differentiations of
G-quadruplex after binding were investigated with circular dichroism
spectrophotometry. The replacement ability of the molecule with a known DNA
binding molecule, ethidium bromide, was clarified fluorometrically. The
Stern-Volmer studies were conducted for determination of the quenching
mechanism. The strong interaction of the molecules (ball-type phthalocyanine
with oligomer) showed us the potential usage of these drug conjugates for
targeted photodynamic therapy in the future. 

Kaynakça

  • 1 A. Ali, S. Bhattacharya, DNA binders in clinical trials and chemotherapy, Bioorganic Med. Chem. 22 (2014) 4506–4521.
  • 2 M. Di Antonio, R. Rodriguez, S. Balasubramanian, Experimental approaches to identify cellular G-quadruplex structures and functions, Methods. 57 (2012) 84–92.
  • 3 H. Han, L.H. Hurley, G-quadruplex DNA: A potential target for anti-cancer drug design, Trends Pharmacol. Sci. 21 (2000) 136–142.
  • 4 A.J. Bhattacharjee, K. Ahluwalia, S. Taylor, O. Jin, J.M. Nicoludis, R. Buscaglia, et al., Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin, Biochimie. 93 (2011) 1297–1309.
  • 5 T.A. Brooks, L.H. Hurley, Targeting MYC Expression through G-Quadruplexes, Genes Cancer. 1 (2010) 641–649.
  • 6 D.S.H. Chan, H. Yang, M.H.T. Kwan, Z. Cheng, P. Lee, L.P. Bai, et al., Structure-based optimization of FDA-approved drug methylene blue as a c-myc G-quadruplex DNA stabilizer, Biochimie. 93 (2011) 1055–1064.
  • 7 V. Dapic, Biophysical and biological properties of quadruplex oligodeoxyribonucleotides, Nucleic Acids Res. 31 (2003) 2097–2107.
  • 8 J. Moon, J.H. Han, D.Y. Kim, M. Jung, S.K. Kim, Effects of deficient of the Hoogsteen base-pairs on the G-quadruplex stabilization and binding mode of a cationic porphyrin, Biochem. Biophys. Reports. 2 (2015) 1–7.
  • 9 E.W. White, Selective Recognition of Quadruplex DNA by Small Molecules by, (2006).
  • 10 T. Simonsson, G-quadruplex DNA structures - Variations on a theme, Biol. Chem. 382 (2001) 621–628.
  • 11 C. Gao, W. Zhang, S. He, S. Li, F. Liu, Y. Jiang, Synthesis and antiproliferative activity of 2,7-diamino l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives as potent telomeric G-quadruplex DNA ligands, Bioorg. Chem. 60 (2015) 30–36.
  • 12 A. De Cian, L. Lacroix, C. Douarre, N. Temime-Smaali, C. Trentesaux, J.-F. Riou, et al., Targeting telomeres and telomerase, Biochimie. 90 (2008) 131–155.
  • 13 L. Zhang, J. Huang, L. Ren, M. Bai, L. Wu, B. Zhai, et al., Synthesis and evaluation of cationic phthalocyanine derivatives as potential inhibitors of telomerase, Bioorganic Med. Chem. 16 (2008) 303–312.
  • 14 P. Charoenphol, H. Bermudez, Design and application of multifunctional DNA nanocarriers for therapeutic delivery, Acta Biomater. 10 (2014) 1683–1691.
  • 15 E. Yabaş, E. Bağda, E. Bağda, The water soluble ball-type phthalocyanine as new potential anticancer drugs, Dye. Pigment. 120 (2015) 220–227.
  • 16 G. De Torre, G. Bottari, U. Hahn, T. Torres, Functional Phthalocyanine Molecular Materials, 2010.
  • 17 A.Y. Tolbin, A. V. Ivanov, L.G. Tomilova, N.S. Zefirov, Preparation of 1,2-bis(3,4-dicyanophenoxymethyl)benzene and the binuclear zinc phthalocyanine derived from it, Mendeleev Commun. 12 (2002) 96–97.
  • 18 L. Hassani, F. Hakimian, E. Safaei, Spectroscopic investigation on the interaction of copper porphyrazines and phthalocyanine with human telomeric G-quadruplex DNA, Biophys. Chem. 187–188 (2014) 7–13.
  • 19 A.A. Salem, I.A. El Haty, I.M. Abdou, Y. Mu, Interaction of human telomeric G-quadruplex DNA with thymoquinone: A possible mechanism for thymoquinone anticancer effect., Biochim. Biophys. Acta. 1850 (2015) 329–42.
  • 20 H. Yaku, T. Murashima, H. Tateishi-Karimata, S.I. Nakano, D. Miyoshi, N. Sugimoto, Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition, Methods. 64 (2013) 19–27.
  • 21 V. Kumar, A. Sengupta, K. Gavvala, R.K. Koninti, P. Hazra, Spectroscopic and thermodynamic insights into the interaction between proflavine and human telomeric G-quadruplex DNA., J. Phys. Chem. B. 118 (2014) 11090–9.
  • 22 S. Neidle, M. a Read, G-quadruplexes as therapeutic targets., Biopolymers. 56 (2001) 195–208.
  • 23 S. Neidle, Genomic Quadruplexes as Therapeutic Targets, Ther. Appl. Quadruplex Nucleic Acids. (2012) 119–138.
  • 24 D. Ren iuk, I. Kejnovska, P. kolakova, K. Bedna ova, J. Motlova, M. Vorli kova, Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions, Nucleic Acids Res. 37 (2009) 6625–6634.
  • 25 H. a Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703–2707.
  • 26 H. Dezhampanah, T. Darvishzad, M. Aghazadeh, Thermodynamic and spectroscopic study on the binding of interaction anionic phthalocyanine with calf thymus DNA, Spectrosc. An Int. J. 26 (2011) 357–365.
  • 27 J. Jaumot, R. Gargallo, Experimental Methods for Studying the Interactions between G-Quadruplex Structures and Ligands, Curr. Pharm. Des. 18 (2012) 1900–1916.
  • 28 M. Sirajuddin, S. Ali, A. Badshah, Journal of Photochemistry and Photobiology B : Biology Drug – DNA interactions and their study by UV – Visible , fluorescence spectroscopies and cyclic voltametry, J. Photochem. Photobiol. B Biol. 124 (2013) 1–19.
  • 29 S. Paramasivan, I. Rujan, P.H. Bolton, Circular dichroism of quadruplex DNAs: Applications to structure, cation effects and ligand binding, Methods. 43 (2007) 324–331.
  • 30 M. Islam, S. Fujii, S. Sato, T. Okauchi, S. Takenaka, A Selective G-Quadruplex DNA-Stabilizing Ligand Based on a Cyclic Naphthalene Diimide Derivative, Molecules. 20 (2015) 10963–10979.
  • 31 Q. Guo, M. Lu, L. a Marky, N.R. Kallenbach, Interaction of the dye ethidium bromide with DNA containing guanine repeats., Biochemistry. 31 (1992) 2451–2455.
  • 32 F. Koeppel, J.F. Riou, a Laoui, P. Mailliet, P.B. Arimondo, D. Labit, et al., Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes., Nucleic Acids Res. 29 (2001) 1087–1096.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik, Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Efkan Bağda

Esra Bağda

Ebru Yabaş

Yayımlanma Tarihi 2 Mayıs 2017
Gönderilme Tarihi 27 Ocak 2017
Kabul Tarihi 25 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 4 Sayı: 2

Kaynak Göster

Vancouver Bağda E, Bağda E, Yabaş E. A versatile water soluble ball-type phthalocyanine as potential antiproliferative drug: the interaction with G-quadruplex formed from Tel 21 and cMYC. JOTCSA. 2017;4(2):579-96.