BibTex RIS Cite

Syntheses and Structural Characterization of Fırst Paraben Substituted Ferrocenyl Phosphazene Compounds

Year 2017, Volume: 4 Issue: 1, 299 - 312, 09.01.2017
https://doi.org/10.18596/jotcsa.287330

Abstract

Parabens have been regarded as a substitute group to increase DNA interactions as well as cytotoxic and antimicrobial activities of ferrocenylphosphazenes. For this reason,
new ferrocenylphosphazenes compounds bearing paraben (ethyl-4-hydroxybenzoate) have been synthesized for the first time (6-10) and their structures have been determined using elemental analysis, FTIR (Fourier transform), 1H (one-dimensional-1D), 31P NMR techniques and X-ray crystallography (for 9 and 10).

References

  • M. Gleria, R. De Jaeger, Applicative Aspect of Cyclophosphazenes, Nova Science Publishers, New York, 2004; references therein. ISBN: 1-59454-026-8.
  • H.R. Allcock, Chemistry and Applications of Polyphosphazenes, Wiley, Hoboken, New Jersey, 2003. ISBN: 978-0-471-44371-1
  • A.K. Andrianov, Polyphosphazenes for Biomedical Applications, John Wiley & Sons, Inc, New Jersey, 2009; references therein. ISBN: 978-0-470-19343-3.
  • Y. Tumer, C. Y. Ataol, H. Bati, N. Calıskan, O. Buyukgungor, Preparation and Characterization of Hexakis[2-methoxy-4-(2,3-dimethylphenylimino)phenylato] cyclotriphosphazene, Phosphorus Sulfur and Silicon and the Related Elements, 2010; 185(12): 2449-2454. DOI:10.1080/10426501003692078.
  • B. Cosut, S. Yesilot, M. Durmus, A. Kilic, Synthesis and fluorescence properties of hexameric and octameric subphthalocyanines based cyclic phosphazenes, Dyes and Pıgments, 2013; 98(3): 442–449. DOI: 10.1016/j.dyepig.2013.03.028.
  • D. Bledzka, J. Gromadzinska, W. Wasowicz, Parabens. from environmental studies to human health. Environ. Int., 2014; 67: 27–42. DOI: 10.1016/j.envint.2014.02.007.
  • A. K. Andrianov, D. P. DeCollibus, H. A. Gillis, H. H. Kha, A. Marin, M. R. Prausnitz, L. A. Babiuk, H. Townsend, G. Mutwiri, Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization, P Natl Acad Scı Usa, 2009; 106 (45): 18936–18941. DOI: 10.1073/pnas.0908842106.
  • M. L. Stone, A. D. Wilson, M. K. Harrup, F. F. Stewart, An initial study of hexavalent phosphazene salts as draw solutes in forward osmosis, Desalination, 2013; 312: 130–136. DOI: 10.1016/j.desal.2012.09.030.
  • G. Y. Çiftçi , E. Şenkuytu , S. E. İncir , F. Yuksel, Z. Ölçer, T. Yıldırım, A. Kılıç, Y. Uludağ, First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor, Biosensors and Bioelectronics, 2016; 80: 331-338. DOI: 10.1016/j.bios.2016.01.061.
  • H. R. Allcock, S. Kwon, An Ionıcally Cross-Lınkable Polyphosphazene: Poly(Bıs(Carboxylatophenoxy)Phosphazene) and Its Hydrogels and Membranes, Macromolecules, 1989; 22 (1): 75–79. DOI: 10.1021/ma00191a015.
  • Y. Akgol, C. Hofmann, Y. Karatas, C. Cramer, H.-D. Wiemhofer, M. Schönhoff, Conductivity Spectra of Polyphosphazene-Based Polyelectrolyte Multilayers, J. Phys. Chem. B, 2007; 111: 8532-8539. DOI: 10.1021/jp068872w.
  • N. Asmafiliz, Z. Kılıç, T. Hökelek, L. Açık, L.Y. Koç, Y. Süzen, Y. Öner, Phosphorus–nitrogen compounds: Part 26. Syntheses, spectroscopic and structural investigations, biological and cytotoxic activities, and DNA interactions of mono and bisferrocenylspirocyclotriphosphazenes, Inorg. Chim. Acta, 2013; 400: 250-261. DOI: 10.1016/j.ica.2013.03.001.
  • Y. Tumer, N. Asmafiliz, Z. Kılıc, T. Hokelek, L. Y. Koc, L. Acık, M. L. Yola, A. O. Solak, Y. Oner, D. Dundar, M. Yavuz, Phosphorus–nitrogen compounds: Part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups, Journal of Molecular Structure, 2013; 1049: 112–124. DOI: 10.1016.
  • Y. Tumer, L. Y. Koc, N. Asmafiliz, Z. Kılıc, Tuncer Hokelek, H. Soltanzade, L. Acık, M. L. Yola, A. O. Solak, Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes, J Biol Inorg Chem., 2015; 20: 165–178. DOI:10.1007/s00775-014-1223-5.
  • E.E. Ilter, N. Asmafiliz, Z. Kılıc, L. Acık, M. Yavuz, E. B. Bali, A.O. Solak, F. Buyukkaya, H. Dal, T. Hokelek, Phosphorus–nitrogen compounds: Part 19. Syntheses, Structural and Electrochemical Investigations, Biological Activities and DNA Interactions of New Spirocyclic monoferrocenylcyclotriphosphazenes, Polyhedron, 2010; 29: 2933-2944. DOI: 10.1016.
  • L. J. Farrugia, ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J Appl. Cryst., 1997; 30: 565–566.
  • Y. Tumer, H. Batı, N. Çalışkan, Ç. Yüksektepe, O. Büyükgüngör, Synthesis, Crystal Structure and Characterization of Hexakis[2-methoxy-4-formylphenoxy] cyclotriphosphazene. Z. Anorg. Allg. Chem., 2008; 634(3): 597–599. DOI: 10.1002/zaac.200700389.
  • A. Kiliç, S. Begeç, B. Çetinkaya, Z. Kiliç, T. Hökelek, N. Gündüz, M. Yildiz, Unusual products in the reactions of hexachlorocyclotriphosphazatriene with sodium aryloxides. Heteroatom Chem., 1996; 7: 249-256. DOI: 10.1002/(SICI)1098-1071(199608) 7:4<249::AID-HC6>3.0.CO;2-0.
  • G. J. Bullen, An improved determination of the crystal structure of hexachlorocyclotriphosphazene (phosphonitrilic chloride). J. Chem. Soc. A., 1971; 1450-1453. DOI: 10.1039/J19710001450.
  • A.L. Spek, Acta Cryst., 1990; A 46, C34.
  • Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
  • G.M. Sheldrick,. A short history of SHELX. Acta Crystallogr. Sect. A., 2008; 64: 112–122. DOI:10.1107/S0108767307043930.
Year 2017, Volume: 4 Issue: 1, 299 - 312, 09.01.2017
https://doi.org/10.18596/jotcsa.287330

Abstract

References

  • M. Gleria, R. De Jaeger, Applicative Aspect of Cyclophosphazenes, Nova Science Publishers, New York, 2004; references therein. ISBN: 1-59454-026-8.
  • H.R. Allcock, Chemistry and Applications of Polyphosphazenes, Wiley, Hoboken, New Jersey, 2003. ISBN: 978-0-471-44371-1
  • A.K. Andrianov, Polyphosphazenes for Biomedical Applications, John Wiley & Sons, Inc, New Jersey, 2009; references therein. ISBN: 978-0-470-19343-3.
  • Y. Tumer, C. Y. Ataol, H. Bati, N. Calıskan, O. Buyukgungor, Preparation and Characterization of Hexakis[2-methoxy-4-(2,3-dimethylphenylimino)phenylato] cyclotriphosphazene, Phosphorus Sulfur and Silicon and the Related Elements, 2010; 185(12): 2449-2454. DOI:10.1080/10426501003692078.
  • B. Cosut, S. Yesilot, M. Durmus, A. Kilic, Synthesis and fluorescence properties of hexameric and octameric subphthalocyanines based cyclic phosphazenes, Dyes and Pıgments, 2013; 98(3): 442–449. DOI: 10.1016/j.dyepig.2013.03.028.
  • D. Bledzka, J. Gromadzinska, W. Wasowicz, Parabens. from environmental studies to human health. Environ. Int., 2014; 67: 27–42. DOI: 10.1016/j.envint.2014.02.007.
  • A. K. Andrianov, D. P. DeCollibus, H. A. Gillis, H. H. Kha, A. Marin, M. R. Prausnitz, L. A. Babiuk, H. Townsend, G. Mutwiri, Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization, P Natl Acad Scı Usa, 2009; 106 (45): 18936–18941. DOI: 10.1073/pnas.0908842106.
  • M. L. Stone, A. D. Wilson, M. K. Harrup, F. F. Stewart, An initial study of hexavalent phosphazene salts as draw solutes in forward osmosis, Desalination, 2013; 312: 130–136. DOI: 10.1016/j.desal.2012.09.030.
  • G. Y. Çiftçi , E. Şenkuytu , S. E. İncir , F. Yuksel, Z. Ölçer, T. Yıldırım, A. Kılıç, Y. Uludağ, First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor, Biosensors and Bioelectronics, 2016; 80: 331-338. DOI: 10.1016/j.bios.2016.01.061.
  • H. R. Allcock, S. Kwon, An Ionıcally Cross-Lınkable Polyphosphazene: Poly(Bıs(Carboxylatophenoxy)Phosphazene) and Its Hydrogels and Membranes, Macromolecules, 1989; 22 (1): 75–79. DOI: 10.1021/ma00191a015.
  • Y. Akgol, C. Hofmann, Y. Karatas, C. Cramer, H.-D. Wiemhofer, M. Schönhoff, Conductivity Spectra of Polyphosphazene-Based Polyelectrolyte Multilayers, J. Phys. Chem. B, 2007; 111: 8532-8539. DOI: 10.1021/jp068872w.
  • N. Asmafiliz, Z. Kılıç, T. Hökelek, L. Açık, L.Y. Koç, Y. Süzen, Y. Öner, Phosphorus–nitrogen compounds: Part 26. Syntheses, spectroscopic and structural investigations, biological and cytotoxic activities, and DNA interactions of mono and bisferrocenylspirocyclotriphosphazenes, Inorg. Chim. Acta, 2013; 400: 250-261. DOI: 10.1016/j.ica.2013.03.001.
  • Y. Tumer, N. Asmafiliz, Z. Kılıc, T. Hokelek, L. Y. Koc, L. Acık, M. L. Yola, A. O. Solak, Y. Oner, D. Dundar, M. Yavuz, Phosphorus–nitrogen compounds: Part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups, Journal of Molecular Structure, 2013; 1049: 112–124. DOI: 10.1016.
  • Y. Tumer, L. Y. Koc, N. Asmafiliz, Z. Kılıc, Tuncer Hokelek, H. Soltanzade, L. Acık, M. L. Yola, A. O. Solak, Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes, J Biol Inorg Chem., 2015; 20: 165–178. DOI:10.1007/s00775-014-1223-5.
  • E.E. Ilter, N. Asmafiliz, Z. Kılıc, L. Acık, M. Yavuz, E. B. Bali, A.O. Solak, F. Buyukkaya, H. Dal, T. Hokelek, Phosphorus–nitrogen compounds: Part 19. Syntheses, Structural and Electrochemical Investigations, Biological Activities and DNA Interactions of New Spirocyclic monoferrocenylcyclotriphosphazenes, Polyhedron, 2010; 29: 2933-2944. DOI: 10.1016.
  • L. J. Farrugia, ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J Appl. Cryst., 1997; 30: 565–566.
  • Y. Tumer, H. Batı, N. Çalışkan, Ç. Yüksektepe, O. Büyükgüngör, Synthesis, Crystal Structure and Characterization of Hexakis[2-methoxy-4-formylphenoxy] cyclotriphosphazene. Z. Anorg. Allg. Chem., 2008; 634(3): 597–599. DOI: 10.1002/zaac.200700389.
  • A. Kiliç, S. Begeç, B. Çetinkaya, Z. Kiliç, T. Hökelek, N. Gündüz, M. Yildiz, Unusual products in the reactions of hexachlorocyclotriphosphazatriene with sodium aryloxides. Heteroatom Chem., 1996; 7: 249-256. DOI: 10.1002/(SICI)1098-1071(199608) 7:4<249::AID-HC6>3.0.CO;2-0.
  • G. J. Bullen, An improved determination of the crystal structure of hexachlorocyclotriphosphazene (phosphonitrilic chloride). J. Chem. Soc. A., 1971; 1450-1453. DOI: 10.1039/J19710001450.
  • A.L. Spek, Acta Cryst., 1990; A 46, C34.
  • Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
  • G.M. Sheldrick,. A short history of SHELX. Acta Crystallogr. Sect. A., 2008; 64: 112–122. DOI:10.1107/S0108767307043930.
There are 22 citations in total.

Details

Journal Section Articles
Authors

Yasemin Tümer

Efsun Şehirli This is me

Çiğdem Yüksektepe Ataol This is me

Publication Date January 9, 2017
Submission Date July 11, 2016
Published in Issue Year 2017 Volume: 4 Issue: 1

Cite

Vancouver Tümer Y, Şehirli E, Yüksektepe Ataol Ç. Syntheses and Structural Characterization of Fırst Paraben Substituted Ferrocenyl Phosphazene Compounds. JOTCSA. 2017;4(1):299-312.