Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 4 Sayı: 1, 77 - 92, 13.07.2017
https://doi.org/10.18596/jotcsa.346700

Öz

Kaynakça

  • 1. Garnovskii AD, Vasil’chenko IS. Rational design of metal coordination compounds with azomethine ligands. Russ Chem Rev. 2002; 71 (11): 943–996.
  • 2. Sinha D, Tiwari A. K, Singh S, Shukla G, Mishra P., Chandra H, Mishra AK. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur J Med Chem. 2008; 43 (1): 160–165.
  • 3. Asiri AM, Khan SA. Palladium(II) complexes of NS donor ligands derived from steroidal thiosemicarbazones as antibacterial agents. Molecules 2010; 15 (7): 4784–4791.
  • 4. Pandeya SN, Sriram D, Nath G, De-Clercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole. Arzneimittelforschung 2000; 50 (1): 55–59.
  • 5. Asiri AM, Khan SA, Marwani HM, Sharma K. Synthesis, spectroscopic and physicochemical investigations of environmentally benign heterocyclic Schiff base derivatives as antibacterial agents on the bases of in vitro and density functional theory. Journal of Photochemistry and Photobiology B: Biology. 2013; 120: 82–89.
  • 6. Bharti N, Maurya MR, Naqvi F, Azam A. Synthesis and antiamoebic activity of new cyclooctadiene ruthenium(II) complexes with 2-acetylpyridine and benzimidazole derivatives. Bioorg Med Chem Lett. 2010; 10 (20): 2243–2245.
  • 7. Bhandari SV, Bothara KG, Paut MK, Patil AA, Sarkate AP, Mokale VJ. Design, synthesis and evaluation of anti-inflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2- thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorg Med Chem. 2008; 16 (4): 1822–1831.
  • 8. Singh K, Barwa MS, Tyagi P. Synthesis, characterization and biological studies of Co(II). Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur J Med Chem. 2006; 41 (1): 147–153.
  • 9. Bawa S, Kumar S. Synthesis of Schiff’s bases of 8-methyl-tetrazolo[1,5-a]quinoline as potential anti-inflammatory and antimicrobial agents. Ind J Chem. 2009; 48B: 142–145.
  • 10. Aboul-Fadl T, Abdel-Aziz HA, Abdel-Hamid MK, Elsaman T, Thanassi J, Pucci MJ. Schiff bases of indoline-2,3-dione: Potential novel inhibitors of mycobacterium tuberculosis (Mtb) DNA Gyrase. Molecules 2011; 16 (9), 7864–7879.
  • 11. Huang G-S, Liang Y-M, Wu X-L, Liu W-M, Ma Y-X. Some ferrocenyl Schiff bases with nonlinear optical properties. Appl Organometal Chem. 2003; 17 (9): 706–710.
  • 12. Ghazzali M, Langer V, Lopes C, Eriksson A, Ohrstrom L. Syntheses, crystal structures, optical limiting properties, and DFT calculations of three thiophene-2-aldazine Schiff base derivatives. New J Chem. 2007; 31:1777–1784.
  • 13. Singh LP, Bhatnagar JM. Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta 2004; 64 (2): 313–319.
  • 14. Cano M, Oriol L, Piñol M, Serrano JL. Photopolymerization of reactive mesogenic Schiff bases and related metallomesogens. Chem Mater. 1999; 11 (1): 94–100.
  • 15. Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books; California; 1994.
  • 16. Okada T, Katou K, Hirose T, Yuasa M, Sekine I. Oxygen Reduction on Pyrolytic Graphite Electrodes Modified with Electropolymerized Cobalt Salen Compounds. J Electrochem Soc. 1999; 146 (7): 2562–2568.
  • 17. Percino MJ, Cerón M, Castro ME, Ramírez R, Soriano G, Chapela VM. (E)-2-[(2-hydroxybenzylidene)amino]phenylarsonic acid Schiff base: Synthesis, characterization and theoretical studies. Journal of Molecular Structure. 2015; 1081: 193–200.
  • 18. Hassan WM, Zayed EM, Elkholy AK, Moustafa H, Mohamed GG. Spectroscopic and density functional theory investigation of novel Schiff base complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 103: 378–387.
  • 19. Beyramabadi SA, Morsali A, Khoshkholgh MJ, Esmaeili AA. N,N/-dipyridoxyl Schiff bases: Synthesis, experimental and theoretical characterization. Spectrochimica Acta A 2011; 83 (1): 467– 471.
  • 20. Ren T, Liu S, Li G, Zhang J, Guo J. Li W, Yang L. Synthesis, spectroscopic properties and theoretical studies of bis-Schiff bases derived from polyamine and pyrazolones. Spectrochimica Acta A Mol Biomol Spectrosc. 2012; 97:167–175.
  • 21. Berber H, Uysal D, Aydoğdu A. o-Hidroksi Schiff Bazı Moleküllerin ve Tautomer Yapılarının Kararlılıklarının, Asitlik Sabitlerinin Teorik olarak Belirlenmesi ve Moleküler Elektronik Özelliklerinin Araştırılması. Fiziksel Kimya Kongresi (Physical Chemistry Congress), Bülent Ecevit Üniversitesi, 15-18 Mayıs 2017. P55.
  • 22. Becke AD. Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. J Chem Phys. 1992; 97: 9173-9177.
  • 23. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993; 98: 5648-5652.
  • 24. James J. P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2016).
  • 25. CS ChemBioDraw Ultra 12.0 for Microsoft Windows (CS ChemBioDraw Ultra 12.0. 2010).
  • 26. Gaussian09 Rev B.01. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT (2009).
  • 27. GaussView, Version 5, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2009.
  • 28. Sıdır, İ. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: Effect of electron donor unit for organic photovoltaic solar cell, Molecular Physics 2017; 115 (19): 2451-2459.
  • 29. Ghomrasni S, Ayachi S, Alimi K. New acceptor–donor–acceptor(A–D–A) type copolymers for efficient organic photovoltaic devices. Journal of Physics and Chemistry of Solids 2015; 76: 105–111.
  • 30. Azazi A, Mabrouk A, Chemek M, Kreher D, Alimi K. DFT modeling of conjugated copolymers photophysical properties: Towards organic solar cell application. Synthetic Metals 2014; 198: 314–322.

Theoretical Study on the Stability, Acidity Constants and Molecular Electronic Properties of Certain o-Hydroxy Schiff Bases and their Tautomers

Yıl 2017, Cilt: 4 Sayı: 1, 77 - 92, 13.07.2017
https://doi.org/10.18596/jotcsa.346700

Öz

In the present work, certain novel o-hydroxy Schiff bases and possible tautomer forms, which were previously synthesized by our group and their structures elucidated, have been calculated by DFT/6-311g(2d,2p) in both vacuum and polar solvents and the most stable tautomeric forms have been determined. The acidity constants of the Schiff bases have been calculated with the PM6 method by MOPAC2016. HOMO-LUMO values of the studied Schiff bases were calculated with DFT/6-311g(2d,2p) and their possible molecular electronic properties were searched. The results were compared with those experimental values.

Kaynakça

  • 1. Garnovskii AD, Vasil’chenko IS. Rational design of metal coordination compounds with azomethine ligands. Russ Chem Rev. 2002; 71 (11): 943–996.
  • 2. Sinha D, Tiwari A. K, Singh S, Shukla G, Mishra P., Chandra H, Mishra AK. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur J Med Chem. 2008; 43 (1): 160–165.
  • 3. Asiri AM, Khan SA. Palladium(II) complexes of NS donor ligands derived from steroidal thiosemicarbazones as antibacterial agents. Molecules 2010; 15 (7): 4784–4791.
  • 4. Pandeya SN, Sriram D, Nath G, De-Clercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole. Arzneimittelforschung 2000; 50 (1): 55–59.
  • 5. Asiri AM, Khan SA, Marwani HM, Sharma K. Synthesis, spectroscopic and physicochemical investigations of environmentally benign heterocyclic Schiff base derivatives as antibacterial agents on the bases of in vitro and density functional theory. Journal of Photochemistry and Photobiology B: Biology. 2013; 120: 82–89.
  • 6. Bharti N, Maurya MR, Naqvi F, Azam A. Synthesis and antiamoebic activity of new cyclooctadiene ruthenium(II) complexes with 2-acetylpyridine and benzimidazole derivatives. Bioorg Med Chem Lett. 2010; 10 (20): 2243–2245.
  • 7. Bhandari SV, Bothara KG, Paut MK, Patil AA, Sarkate AP, Mokale VJ. Design, synthesis and evaluation of anti-inflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2- thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorg Med Chem. 2008; 16 (4): 1822–1831.
  • 8. Singh K, Barwa MS, Tyagi P. Synthesis, characterization and biological studies of Co(II). Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur J Med Chem. 2006; 41 (1): 147–153.
  • 9. Bawa S, Kumar S. Synthesis of Schiff’s bases of 8-methyl-tetrazolo[1,5-a]quinoline as potential anti-inflammatory and antimicrobial agents. Ind J Chem. 2009; 48B: 142–145.
  • 10. Aboul-Fadl T, Abdel-Aziz HA, Abdel-Hamid MK, Elsaman T, Thanassi J, Pucci MJ. Schiff bases of indoline-2,3-dione: Potential novel inhibitors of mycobacterium tuberculosis (Mtb) DNA Gyrase. Molecules 2011; 16 (9), 7864–7879.
  • 11. Huang G-S, Liang Y-M, Wu X-L, Liu W-M, Ma Y-X. Some ferrocenyl Schiff bases with nonlinear optical properties. Appl Organometal Chem. 2003; 17 (9): 706–710.
  • 12. Ghazzali M, Langer V, Lopes C, Eriksson A, Ohrstrom L. Syntheses, crystal structures, optical limiting properties, and DFT calculations of three thiophene-2-aldazine Schiff base derivatives. New J Chem. 2007; 31:1777–1784.
  • 13. Singh LP, Bhatnagar JM. Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta 2004; 64 (2): 313–319.
  • 14. Cano M, Oriol L, Piñol M, Serrano JL. Photopolymerization of reactive mesogenic Schiff bases and related metallomesogens. Chem Mater. 1999; 11 (1): 94–100.
  • 15. Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books; California; 1994.
  • 16. Okada T, Katou K, Hirose T, Yuasa M, Sekine I. Oxygen Reduction on Pyrolytic Graphite Electrodes Modified with Electropolymerized Cobalt Salen Compounds. J Electrochem Soc. 1999; 146 (7): 2562–2568.
  • 17. Percino MJ, Cerón M, Castro ME, Ramírez R, Soriano G, Chapela VM. (E)-2-[(2-hydroxybenzylidene)amino]phenylarsonic acid Schiff base: Synthesis, characterization and theoretical studies. Journal of Molecular Structure. 2015; 1081: 193–200.
  • 18. Hassan WM, Zayed EM, Elkholy AK, Moustafa H, Mohamed GG. Spectroscopic and density functional theory investigation of novel Schiff base complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 103: 378–387.
  • 19. Beyramabadi SA, Morsali A, Khoshkholgh MJ, Esmaeili AA. N,N/-dipyridoxyl Schiff bases: Synthesis, experimental and theoretical characterization. Spectrochimica Acta A 2011; 83 (1): 467– 471.
  • 20. Ren T, Liu S, Li G, Zhang J, Guo J. Li W, Yang L. Synthesis, spectroscopic properties and theoretical studies of bis-Schiff bases derived from polyamine and pyrazolones. Spectrochimica Acta A Mol Biomol Spectrosc. 2012; 97:167–175.
  • 21. Berber H, Uysal D, Aydoğdu A. o-Hidroksi Schiff Bazı Moleküllerin ve Tautomer Yapılarının Kararlılıklarının, Asitlik Sabitlerinin Teorik olarak Belirlenmesi ve Moleküler Elektronik Özelliklerinin Araştırılması. Fiziksel Kimya Kongresi (Physical Chemistry Congress), Bülent Ecevit Üniversitesi, 15-18 Mayıs 2017. P55.
  • 22. Becke AD. Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. J Chem Phys. 1992; 97: 9173-9177.
  • 23. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993; 98: 5648-5652.
  • 24. James J. P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2016).
  • 25. CS ChemBioDraw Ultra 12.0 for Microsoft Windows (CS ChemBioDraw Ultra 12.0. 2010).
  • 26. Gaussian09 Rev B.01. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT (2009).
  • 27. GaussView, Version 5, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2009.
  • 28. Sıdır, İ. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: Effect of electron donor unit for organic photovoltaic solar cell, Molecular Physics 2017; 115 (19): 2451-2459.
  • 29. Ghomrasni S, Ayachi S, Alimi K. New acceptor–donor–acceptor(A–D–A) type copolymers for efficient organic photovoltaic devices. Journal of Physics and Chemistry of Solids 2015; 76: 105–111.
  • 30. Azazi A, Mabrouk A, Chemek M, Kreher D, Alimi K. DFT modeling of conjugated copolymers photophysical properties: Towards organic solar cell application. Synthetic Metals 2014; 198: 314–322.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik, Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Ulku Dilek Uysal

Halil Berber Bu kişi benim

Ayşe Aydoğdu

Yayımlanma Tarihi 13 Temmuz 2017
Gönderilme Tarihi 26 Ekim 2017
Kabul Tarihi 8 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 4 Sayı: 1

Kaynak Göster

Vancouver Uysal UD, Berber H, Aydoğdu A. Theoretical Study on the Stability, Acidity Constants and Molecular Electronic Properties of Certain o-Hydroxy Schiff Bases and their Tautomers. JOTCSA. 2017;4(1):77-92.