Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 5 Sayı: 1, 205 - 218, 01.09.2017
https://doi.org/10.18596/jotcsa.350370

Öz

Kaynakça

  • References
  • 1. Henriquez CL, Arias T, Pires JC, Croat TB, Schaal BA. Phylogenomics of the plant family Araceae. Mol. Phylogenet. Evol. 2014; 75: 91-102.
  • 2. Farid MM, Hussein SR, Ibrahim LF, Desouky MAE, Elsayed AM, et al. Cytotoxic activity and phytochemical analysis of Arum palaestinum Boiss. Asian Pac. J. Trop. Biomed. 2015; 5(11): 944-7.
  • 3. Sağlik S, Alpinar K, İmre S. Fatty acid composition of the seed oil of Arum italicum miller. J. Food Lipids. 2002; 9:95-103.
  • 4. Karahan F, Kulak M, Urlu E, Gözüacik HG, Böyümez T, Şekeroğlu N, et al. Total phenolic content, ferric reducing and DPPH scavenging activity of Arum dioscoridis. Nat. Prod. Res. 2015; 29: 1678-83 I 5. Abu-Reidah, IM, Ali-Shtayeh MS, Jamous RM, Arraez-Roman D, Segura-Carretero A. Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography–tandem mass spectrometry. Food Res. Int. 2015; 70: 74-86.
  • 6. Halliwell B, Guterridge J, Croos C. Free radicals, antioxidants and human disease: Where are we now? J. Lab. Clin. Med. 1992; 119 598-620.
  • 7. Zhang X, Shi Q, Ji D, Niu L, Zhang Y. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China. Food Res. Int. 2017; 97:141-48.
  • 8. Zou Z, Xi W, Hu Y, Nie C, Zhou Z. Antioxidant activity of Citrus fruits. Food Chem. 2016; 196: 885-96.
  • 9. Limmongkon A, Janhom P, Amthong A, Kawpanuk M, Nopprang P, Poohadsuan J, et al. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pac. J. Trop. Biomed. 2017; 7(4): 332-8.
  • 10. Skendi A, Irakli M, Chatzopoulou P. Analysis of phenolic compounds in Greek plants of Lamiaceae familyby HPLC. J. Appl. Res. Med. Aromat. Plants. 2017; 6: 62-9.
  • 11. Wollinger A, Perrin E, Chahboun J, Jeannot V, Touraud D, Kunz W. Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. Comptes. Rendus. Chim. 2016; 19(6): 754-65
  • 12. Figueiredo C, Barroso J, Pedro L, Scheefeer J. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 2007; 22: 206-13.
  • 13. Demirtas I, Erenler R, Elmastas M, Goktasoglu A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem. 2013; 136(1): 34-40.
  • 14. Yabalak E, Gizir A. Evaluation of total polyphenol content, antioxidant activity and chemical composition of methanolic extract from Allium Kharputense Freyn et. Sint. and determination of mineral and trace elements. J. Turk. Chem. Soc. Sect. A: Chem. 2017; 4: 691-708.
  • 15. Tokalıoğlu Ş. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012; 134(4): 2504-8.
  • 16. Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V. Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem. 2012; 135(2): 494-501.
  • 17. Karak T, Bhagat RM. Trace elements in tea leaves, made tea and tea infusion: A review. Food Res. Int. 2010; 43(9): 2234-52.
  • 18. Dziri S, Hassen I, Fatnassi S, Mrabet Y, Casabianca H, Hanchi B, et al. Phenolic constituents, antioxidant and antimicrobial activities of rosy garlic (Allium roseum var. odoratissimum). J. Funct. Foods. 2012; 4(2): 423-32.
  • 19. Edrisi M, Timothy S, Langrish AG. Spray drying bioactive orange-peel extracts produced by Soxhlet extraction: Use of WPI, antioxidant activity and moisture sorption isotherms. LWT-Food Sci. Technol. 2016; 72: 1-8.
  • 20. Ammar I, Ennouri M, Attia H. Phenolic content and antioxidant activity of cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method. Ind. Crops Prod. 2015; 64: 97-104.
  • 21. Lim YY, Quah EPL. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem. 2007; 103(3): 734-40.
  • 22. Jo YH, Seo GU, Yuk HG, Lee SC. Antioxidant and tyrosinase inhibitory activities of methanol extracts from Magnolia denudata and Magnolia denudata var. purpurascens flowers. Food Res. Int. 2012; 47: 197-200.
  • 23. Özcelik B, Lee J, Min D. Effects of Light, Oxygen, and pH on the Absorbance of 2, 2-Diphenyl-1-picrylhydrazyl. J. Food Sci. 2003; 68(2): 487-90.
  • 24. Wang Y, Gao Y, Ding H, Liu S, Han X, Gui J, et al. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem. 2017; 218: 152-8.
  • 25. Shalaby EA, Shanab SMM. Antioxidant compounds, assays of determination and mode of action. Afr. J. Pharm. Pharmacol. 2013; 7(10): 528-39.
  • 26. Utrera M, Estévez M. Impact of trolox, quercetin, genistein and gallic acid on the oxidative damage to myofibrillar proteins: The carbonylation pathway. Food Chem.2013; 141(4): 4000-9.
  • 27. Schlesier K, Harwat M, Böhm V, Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002; 36(2): 177-87.
  • 28. Kovats E, Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta. 1958; 41(7): 1915-32.
  • 29. d'Acampora Zellner B., Bicchi C, Dugo P, Rubiolo P, Giovanni Dugo, Luigi Mondello. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 2008; 23: 297-314.
  • 30. Jordán MJ, Goodner KL, Shaw PE. Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC-MS and GC/O. J. Agric. Food Chem. 2002; 50(6): 1523-8.
  • 31. Ianaro A, Ialenti A. Maffia P, Di Meglio P, Di Rosa M, Santoro MG, Anti-inflammatory activity of 15-Deoxy-Δ12,14-PGJ2 and 2-Cyclopenten-1-one: role of the heat shock response, Mol. Pharmacol. 2003; 64: 85-93.
  • 32. Pino JA, Mesa J, Muñoz Y, Martí MP, Marbot R. Volatile Components from Mango (Mangifera indica L.) Cultivars. J. Agric. Food. Chem. 2005; 53(6): 2213-23.
  • 33. Warner K, Evans CD, List GR, Dupuy HP, Wadsworth JI, Goheen GE. Flavor score correlation with pentanal and hexanal contents of vegetable oil. J. Am. Oil Chem. Soc. 1978; 55(2): 252-6.
  • 34. Xu LL, Han T, Wu JZ, Zhang QY, Zhang H, Huang BK, et al. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 2009; 16: 609-16.
  • 35. Asuming WA, Beauchamp PS, Descalzo JT, Dev BC, Dev V, et al. Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochem. Syst. Ecol. 2005; 33(1): 17-26.
  • 36. Palic R, Stojanovic G, Alagic S, Nikolic M, Lepojevic Z. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of the oriental tobacco, Prilep. Flavour Fragr. J. 2002; 17: 323-6.
  • 37. Formisano C, Senatore F, Bruno M, Bellone G. Chemical composition and antimicrobial activity of the essential oil of Phlomis ferruginea Ten. (Lamiaceae) growing wild in Southern Italy. Flavour Fragr J. 2006; 21(5): 848-51.
  • 38. Lalitharani S, Mohan VR, Regini GS, Kalidass C. GC-MS analysis of ethanolic extract of Pothos scandens leaf. J. Herb. Medi. Toxicol. 2009; 3(2): 159-60.
  • 39. Kotowska U, Zalikowski M, Isidorov VA. HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge. Environ. Monit. Asses. 2012; 184(5): 2893-7
  • 40. Jerković I, Hegić G, Marijanović Z, Bubalo D. Organic extractives from Mentha spp. honey and the bee-stomach: methyl syringate, vomifoliol, terpenediol I, hotrienol, and other compounds. Molecules. 2010; 15(4): 2911-24.
  • 41. Tzakou O, Said A, Farag A, Rashed K. Volatile constituents of Ailanthus excelsa Roxb. Flavour Fragr J. 2006; 21(6): 899-901.
  • 42. Park SY, Seetharaman R, Ko MJ, Kim DY, Kim TH, Yoon MK, et al. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. Int. Immunopharmacol. 2014; 19(2): 253-61.
  • 43. Miyazawa M, Marumoto S, Kobayashi T, Yoshida S, Utsumi Y. Determination of characteristic components in essential oils from Wisteria braphybotrys using gas chromatography-olfactometry incremental dilution technique. Rec. Nat. Prod. 2011; 5(3): 221-7.
  • 44. Hu FB, Stampfer MJ, Manson JE, Rimm EB, Wolk A, Colditz GA, et al. Dietary intake of α-linolenic acid and risk of fatal ischemic heart disease among women1-3. Am. J. Clin. Nutr. 1999; 69: 890-7.
  • 45. Vedernikov DN, Roschin VI. Extractive compounds of Birch Buds (Betula pendula Roth.): I. Composition of fatty acids, hydrocarbons, and esters. Rus. J. Bioorg. Chem. 2010; 36(7): 894-8.
  • 46. Andriamaharavo NR. Retention Data. NIST Mass Spectrometry Data Center. 2014.
  • 47. Jiang Q, Christen S, Shigenaga MK, Ames BN. γ -Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001; 74(6): 714-22.
  • 48. Karl-Heinz W, Kamal-Eldin A, Elmadfa I. Gamma-tocopherol-an underestimated vitamin? Ann. Nutr. metab. 2004; 48(3): 169-188.
  • 49. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996; 20(7): 933-56.
  • 50. Prohaska JR. Functions of trace elements in brain metabolism Physiol. Rev. 1987; 67: 858-901.
  • 51. Carvalho ML, Magalhães T, Becker M, von Bohlen A. Trace elements in human cancerous and healthy tissues: A comparative study by EDXRF, TXRF, synchrotron radiation and PIXE. Spectrochim. Acta Part B: At. Spectrosc. 2007; 62(9); 1004-11.
  • 52. Fraga CG. Relevance, essentiality and toxicity of trace elements in human health, Mol. Aspects Med. 2005; 26: 235-44.
  • 53. Karak T, Bhagat RM. Trace elements in tea leaves, made tea and tea infusion: A review. Food Res Int. 2010; 43(9): 2234-52.
  • 54. Cupit M, Larsson O, de Meeûs C, Eduljee GH, Hutton, M, Assessment and management of risks arising from exposure to cadmium in fertilizers-II. Sci Total Environ. 2002; 291: 189-206.

Radical Scavenging Activity and Chemical Composition of Methanolic Extract from Arum dioscoridis SM. var. dioscoridis and Determination of Its Mineral and Trace Elements

Yıl 2018, Cilt: 5 Sayı: 1, 205 - 218, 01.09.2017
https://doi.org/10.18596/jotcsa.350370

Öz

Arum dioscoridis SM. var. dioscoridis (A. dioscoridis) which is a member of Arum L. genus and belonging to
Araceae family was extensively analyzed in detail. DPPH free radical scavenging
capacity of A. dioscoridis was
obtained as 0.01091 mg gallic acid (GA) and 0.0929
mg Trolox (Tr) equivalent per mg of extract, respectively,
based on DPPH free radical scavenging activity analysis. Chemical composition of
A. dioscoridis was evaluated and
16 compounds were detected in the methanolic extract using GC-MS. Obtained
compounds were assessed for their health benefits according to literature
works. 20 elements were obtained in the mineral
and trace element analysis by ICP-MS using microwave
digestion procedure
.

Kaynakça

  • References
  • 1. Henriquez CL, Arias T, Pires JC, Croat TB, Schaal BA. Phylogenomics of the plant family Araceae. Mol. Phylogenet. Evol. 2014; 75: 91-102.
  • 2. Farid MM, Hussein SR, Ibrahim LF, Desouky MAE, Elsayed AM, et al. Cytotoxic activity and phytochemical analysis of Arum palaestinum Boiss. Asian Pac. J. Trop. Biomed. 2015; 5(11): 944-7.
  • 3. Sağlik S, Alpinar K, İmre S. Fatty acid composition of the seed oil of Arum italicum miller. J. Food Lipids. 2002; 9:95-103.
  • 4. Karahan F, Kulak M, Urlu E, Gözüacik HG, Böyümez T, Şekeroğlu N, et al. Total phenolic content, ferric reducing and DPPH scavenging activity of Arum dioscoridis. Nat. Prod. Res. 2015; 29: 1678-83 I 5. Abu-Reidah, IM, Ali-Shtayeh MS, Jamous RM, Arraez-Roman D, Segura-Carretero A. Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography–tandem mass spectrometry. Food Res. Int. 2015; 70: 74-86.
  • 6. Halliwell B, Guterridge J, Croos C. Free radicals, antioxidants and human disease: Where are we now? J. Lab. Clin. Med. 1992; 119 598-620.
  • 7. Zhang X, Shi Q, Ji D, Niu L, Zhang Y. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China. Food Res. Int. 2017; 97:141-48.
  • 8. Zou Z, Xi W, Hu Y, Nie C, Zhou Z. Antioxidant activity of Citrus fruits. Food Chem. 2016; 196: 885-96.
  • 9. Limmongkon A, Janhom P, Amthong A, Kawpanuk M, Nopprang P, Poohadsuan J, et al. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pac. J. Trop. Biomed. 2017; 7(4): 332-8.
  • 10. Skendi A, Irakli M, Chatzopoulou P. Analysis of phenolic compounds in Greek plants of Lamiaceae familyby HPLC. J. Appl. Res. Med. Aromat. Plants. 2017; 6: 62-9.
  • 11. Wollinger A, Perrin E, Chahboun J, Jeannot V, Touraud D, Kunz W. Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. Comptes. Rendus. Chim. 2016; 19(6): 754-65
  • 12. Figueiredo C, Barroso J, Pedro L, Scheefeer J. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 2007; 22: 206-13.
  • 13. Demirtas I, Erenler R, Elmastas M, Goktasoglu A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem. 2013; 136(1): 34-40.
  • 14. Yabalak E, Gizir A. Evaluation of total polyphenol content, antioxidant activity and chemical composition of methanolic extract from Allium Kharputense Freyn et. Sint. and determination of mineral and trace elements. J. Turk. Chem. Soc. Sect. A: Chem. 2017; 4: 691-708.
  • 15. Tokalıoğlu Ş. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012; 134(4): 2504-8.
  • 16. Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V. Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem. 2012; 135(2): 494-501.
  • 17. Karak T, Bhagat RM. Trace elements in tea leaves, made tea and tea infusion: A review. Food Res. Int. 2010; 43(9): 2234-52.
  • 18. Dziri S, Hassen I, Fatnassi S, Mrabet Y, Casabianca H, Hanchi B, et al. Phenolic constituents, antioxidant and antimicrobial activities of rosy garlic (Allium roseum var. odoratissimum). J. Funct. Foods. 2012; 4(2): 423-32.
  • 19. Edrisi M, Timothy S, Langrish AG. Spray drying bioactive orange-peel extracts produced by Soxhlet extraction: Use of WPI, antioxidant activity and moisture sorption isotherms. LWT-Food Sci. Technol. 2016; 72: 1-8.
  • 20. Ammar I, Ennouri M, Attia H. Phenolic content and antioxidant activity of cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method. Ind. Crops Prod. 2015; 64: 97-104.
  • 21. Lim YY, Quah EPL. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem. 2007; 103(3): 734-40.
  • 22. Jo YH, Seo GU, Yuk HG, Lee SC. Antioxidant and tyrosinase inhibitory activities of methanol extracts from Magnolia denudata and Magnolia denudata var. purpurascens flowers. Food Res. Int. 2012; 47: 197-200.
  • 23. Özcelik B, Lee J, Min D. Effects of Light, Oxygen, and pH on the Absorbance of 2, 2-Diphenyl-1-picrylhydrazyl. J. Food Sci. 2003; 68(2): 487-90.
  • 24. Wang Y, Gao Y, Ding H, Liu S, Han X, Gui J, et al. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem. 2017; 218: 152-8.
  • 25. Shalaby EA, Shanab SMM. Antioxidant compounds, assays of determination and mode of action. Afr. J. Pharm. Pharmacol. 2013; 7(10): 528-39.
  • 26. Utrera M, Estévez M. Impact of trolox, quercetin, genistein and gallic acid on the oxidative damage to myofibrillar proteins: The carbonylation pathway. Food Chem.2013; 141(4): 4000-9.
  • 27. Schlesier K, Harwat M, Böhm V, Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002; 36(2): 177-87.
  • 28. Kovats E, Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta. 1958; 41(7): 1915-32.
  • 29. d'Acampora Zellner B., Bicchi C, Dugo P, Rubiolo P, Giovanni Dugo, Luigi Mondello. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 2008; 23: 297-314.
  • 30. Jordán MJ, Goodner KL, Shaw PE. Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC-MS and GC/O. J. Agric. Food Chem. 2002; 50(6): 1523-8.
  • 31. Ianaro A, Ialenti A. Maffia P, Di Meglio P, Di Rosa M, Santoro MG, Anti-inflammatory activity of 15-Deoxy-Δ12,14-PGJ2 and 2-Cyclopenten-1-one: role of the heat shock response, Mol. Pharmacol. 2003; 64: 85-93.
  • 32. Pino JA, Mesa J, Muñoz Y, Martí MP, Marbot R. Volatile Components from Mango (Mangifera indica L.) Cultivars. J. Agric. Food. Chem. 2005; 53(6): 2213-23.
  • 33. Warner K, Evans CD, List GR, Dupuy HP, Wadsworth JI, Goheen GE. Flavor score correlation with pentanal and hexanal contents of vegetable oil. J. Am. Oil Chem. Soc. 1978; 55(2): 252-6.
  • 34. Xu LL, Han T, Wu JZ, Zhang QY, Zhang H, Huang BK, et al. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 2009; 16: 609-16.
  • 35. Asuming WA, Beauchamp PS, Descalzo JT, Dev BC, Dev V, et al. Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochem. Syst. Ecol. 2005; 33(1): 17-26.
  • 36. Palic R, Stojanovic G, Alagic S, Nikolic M, Lepojevic Z. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of the oriental tobacco, Prilep. Flavour Fragr. J. 2002; 17: 323-6.
  • 37. Formisano C, Senatore F, Bruno M, Bellone G. Chemical composition and antimicrobial activity of the essential oil of Phlomis ferruginea Ten. (Lamiaceae) growing wild in Southern Italy. Flavour Fragr J. 2006; 21(5): 848-51.
  • 38. Lalitharani S, Mohan VR, Regini GS, Kalidass C. GC-MS analysis of ethanolic extract of Pothos scandens leaf. J. Herb. Medi. Toxicol. 2009; 3(2): 159-60.
  • 39. Kotowska U, Zalikowski M, Isidorov VA. HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge. Environ. Monit. Asses. 2012; 184(5): 2893-7
  • 40. Jerković I, Hegić G, Marijanović Z, Bubalo D. Organic extractives from Mentha spp. honey and the bee-stomach: methyl syringate, vomifoliol, terpenediol I, hotrienol, and other compounds. Molecules. 2010; 15(4): 2911-24.
  • 41. Tzakou O, Said A, Farag A, Rashed K. Volatile constituents of Ailanthus excelsa Roxb. Flavour Fragr J. 2006; 21(6): 899-901.
  • 42. Park SY, Seetharaman R, Ko MJ, Kim DY, Kim TH, Yoon MK, et al. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. Int. Immunopharmacol. 2014; 19(2): 253-61.
  • 43. Miyazawa M, Marumoto S, Kobayashi T, Yoshida S, Utsumi Y. Determination of characteristic components in essential oils from Wisteria braphybotrys using gas chromatography-olfactometry incremental dilution technique. Rec. Nat. Prod. 2011; 5(3): 221-7.
  • 44. Hu FB, Stampfer MJ, Manson JE, Rimm EB, Wolk A, Colditz GA, et al. Dietary intake of α-linolenic acid and risk of fatal ischemic heart disease among women1-3. Am. J. Clin. Nutr. 1999; 69: 890-7.
  • 45. Vedernikov DN, Roschin VI. Extractive compounds of Birch Buds (Betula pendula Roth.): I. Composition of fatty acids, hydrocarbons, and esters. Rus. J. Bioorg. Chem. 2010; 36(7): 894-8.
  • 46. Andriamaharavo NR. Retention Data. NIST Mass Spectrometry Data Center. 2014.
  • 47. Jiang Q, Christen S, Shigenaga MK, Ames BN. γ -Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001; 74(6): 714-22.
  • 48. Karl-Heinz W, Kamal-Eldin A, Elmadfa I. Gamma-tocopherol-an underestimated vitamin? Ann. Nutr. metab. 2004; 48(3): 169-188.
  • 49. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996; 20(7): 933-56.
  • 50. Prohaska JR. Functions of trace elements in brain metabolism Physiol. Rev. 1987; 67: 858-901.
  • 51. Carvalho ML, Magalhães T, Becker M, von Bohlen A. Trace elements in human cancerous and healthy tissues: A comparative study by EDXRF, TXRF, synchrotron radiation and PIXE. Spectrochim. Acta Part B: At. Spectrosc. 2007; 62(9); 1004-11.
  • 52. Fraga CG. Relevance, essentiality and toxicity of trace elements in human health, Mol. Aspects Med. 2005; 26: 235-44.
  • 53. Karak T, Bhagat RM. Trace elements in tea leaves, made tea and tea infusion: A review. Food Res Int. 2010; 43(9): 2234-52.
  • 54. Cupit M, Larsson O, de Meeûs C, Eduljee GH, Hutton, M, Assessment and management of risks arising from exposure to cadmium in fertilizers-II. Sci Total Environ. 2002; 291: 189-206.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik, Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Erdal Yabalak 0000-0002-4009-4174

Yayımlanma Tarihi 1 Eylül 2017
Gönderilme Tarihi 9 Kasım 2017
Kabul Tarihi 21 Aralık 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 1

Kaynak Göster

Vancouver Yabalak E. Radical Scavenging Activity and Chemical Composition of Methanolic Extract from Arum dioscoridis SM. var. dioscoridis and Determination of Its Mineral and Trace Elements. JOTCSA. 2017;5(1):205-18.

Cited By

GC/MS Analysis of Essential oil distilled from Arum rupicola Boiss. var. rupicola (Araceae)
Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi
https://doi.org/10.31020/mutftd.1370658