Araştırma Makalesi
BibTex RIS Kaynak Göster

The Synthesis and Characterization of Novel Pd and Cu vic-dioxime precursors for Their Supercritical Deposition on Multiwalled Carbon Nanotubes

Yıl 2018, Cilt: 5 Sayı: 2, 635 - 652, 01.01.2018
https://doi.org/10.18596/jotcsa.363662

Öz

Novel precursors were
developed for deposition of Cu and Pd nanoparticles on multiwalled carbon
nanotubes for supercritical carbon dioxide deposition technique.
3-(heptadecafluorooctyl)aniline-vic-dioxime and phenanthrenequinonedioxime were
used as ligands in synthesis of the palladium and copper precursors. All
synthesized ligands and complexes were characterized with elemental analysis, 1H
and 19F NMR, FT-IR and magnetic susceptibility technique. Deposition
of these precursors in supercritical carbon dioxide was performed at 363ºK in
the pressure 0.69 MPa H2 and 27.6 MPa CO2. Surface
morphology of metal deposited multiwalled carbon nanotubes has been
investigated with X-ray diffraction, high-resolution transmission electron
microscopy and scanning electron microscopy with EDX. TEM micrographs showed
homogenous distributions of Cu and Pd nanoparticles on the multiwalled carbon
nanotubes. The nature and crystallinity of the nanoparticles were confirmed
using XRD. This study showed that these novel vic-dioxime complexes are suitable precursors for the preparation
of supported metal nanoparticles in supercritical carbon dioxide. 

Kaynakça

  • 1. Ulusal H, Fındıkkıran G, Demirkol O, Akbaşlar D, Giray ES. Supercritical diethylether: A novel solvent for the synthesis of aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. The Journal of Supercritical Fluids. 2015;105;146–50.
  • 2. Ulusal F, Darendeli B, Erünal E, Eğitmen A, Güzel B. Supercritical carbondioxide deposition of γ-Alumina supported Pd nanocatalysts with new precursors and using on Suzuki-Miyaura coupling reactions. The Journal of Supercritical Fluids. 2017;127;111–20.
  • 3. Daoush WM, Lim BK, Mo CB, Nam DH, Hong SH. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Materials Science and Engineering: A. 2009;513–514;247–53.
  • 4. Park PW, Ledford JS. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane. Applied Catalysis B: Environmental. 1998;15;221–31.
  • 5. Rather S, Zacharia R, Hwang SW, Naik M, Nahm KS. Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method. Chemical Physics Letters. 2007;441;261–7.
  • 6. Cangul B, Zhang LC, Aindow M, Erkey C. Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO2 deposition. The Journal of Supercritical Fluids. 2009; 50; 82–90.
  • 7. Parker HL, Rylott EL, Hunt AJ, Dodson JR, Taylor AF, Bruce NC, Clark JH. Supported Palladium Nanoparticles Synthesized by Living Plants as a Catalyst for Suzuki-Miyaura Reactions. Plos one. 2014; 9; 1-6.
  • 8. Du H, Li B, Kang F, Fu R, Zeng Y. Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon. 2007; 45; 429-35.
  • 9. Zhang Y, Erkey C. Preparation of supported metallic nanoparticles using supercritical fluids: A review. The Journal of Supercritical Fluids. 2006;38;252–67.
  • 10. Dobrovolna Z, Kacer P, Cerveny L. Competitive hydrogenation in alkene–alkyne–diene systems with palladium and platinum catalysts. Journal of Molecular Catalysis A: Chemical. 1998;130;279-84.
  • 11. Ye XR, Lin Y, Whang C, Engelhard MH, Wang Y, Wai CM. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. Journal of Materials Chemistry. 2004;14;908-13.
  • 12. Lin Y, Cui X, Ye X. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications. 2005;7;267-74.
  • 13. Cabanas A, Blackburn J, Watkins J. Deposition of Cu films from supercritical fluids using Cu(I) β-diketonate precursors. Microelectronic Engineering. 2002;64;53-61.
  • 14. Erkey C. Preparation of metallic supported nanoparticles and films using supercritical fluid deposition. The Journal of Supercritical Fluids. 2009;3;517–22.
  • 15. Teoh WH, Mammucari R, Foster NR. Solubility of organometallic complexes in supercritical carbon dioxide: A review. Journal of Organometallic Chemistry. 2013;724;102-16.
  • 16. Guzel B, Avşar G, Çınkır H. Supercritical Carbon Dioxide-Soluble Fluorus vic-Dioxime Ligands and their NiII Complexes: Synthesis, Characterization and Solubility Properties. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2007;37;801-4.
  • 17. Smart NG, Carleson T, Kast T, Clifford AA, Burford MD, Wai CM. Solubility of chelating agents and metal-containing compounds in supercritical fluid carbon dioxide. Talanta. 1997; 44; 137-50.
  • 18. Peng Q, Hojo D, Park KJ, Parsons GN. Low temperature metal oxide film deposition and reaction kinetics in supercritical carbon dioxide. Thin Solid Films. 2008;516;4997–5003.
  • 19. Yildirim B, Özcan E, Deveci P. New glyoxime derivatives and their transition metal complexes. Russian Journal of Coordination Chemistry. 2007;33;417–21.
  • 20. Ulusal F, Güzel B. Deposition of palladium by the hydrogen assisted on SBA-15 with a new precursor using supercritical carbon dioxide. The Journal of Supercritical Fluids. 2018; 133; 233–8.
  • 21. Chandima A, Arthur DB. Efficient Synthesis of 1,4,5,12-Tetraazatriphenylene and Derivatives. Journal of American Chemical Society. 2004;69;7741-4.
  • 22. Lam F, Hu X. A new system design for the preparation of copper/activated carbon catalyst by metal-organic chemical vapor deposition method. Chemical Engineering Science. 2003;58;687 – 95.
  • 23. Dervishi E, Li Z, Shyaka J, Watanabe F, Biswas A, Umwungeri JL, Courte A, Biris AB, Kebdani O, Biris AS. The role of hydrocarbon concentration on the synthesis of large area few to multi-layer graphene structures. Chemical Physics Letters. 2011;501;390–5.
  • 24. Yüksel F, Gümüş G, Gürol İ, Ahsen V, Chumakov Y, Jeanneaub E, Luneau D. Channel architecture via self assembly of oxamide oximes complexes. Dalton Transactions. 2008;0; 241–52.
  • 25. Gürol İ, Ahsen V, Bekaroğlu Ö. Synthesis of soluble complexes from a tetradentate dithioglyoxime ligand. Journal of the Chemical Society, Dalton Transactions. 1992; 0; 2283-6.
  • 26. Singh MS, Singh AK. Heterocyclization of vicinal dioximes to seven membered N, P and O heterocycles. Indian Journal of Chemistry –B. 2000; 32; 551-3.
  • 27. Burakevi JV, Lore AM, Volpp GP. Phenylglyoxime. Separation, characterization, and structure of three isomers. The Journal of Organic Chemistry. 1971; 36; 1-4.
  • 28. Özcan E, Karapınar E, Demirtas B. Synthesis of four new vic-dioximes and their nickel(II), cobalt(II), copper(II) and cadmium(II) complexes. Transition Metal Chemistry. 2002; 27; 557-61.
  • 29. Rajkumar K, Aravindan S. Tribological studies on microwave sintered copper–carbon nanotube composites. Wear. 2011;270;613–21.
  • 30. Wu HX, Zhang CX, Jin L, Yang H, Yang SP. Preparation and magnetic properties of cobalt nanoparticles with dendrimers as templates. Materials Chemistry and Physics. 2010;121;342-8.
  • 31. Brintzinger H, Titzmann R. Notiz über einige halogenierte aliphatische Oxime. Chemische Berichte.1952;85;344-5.
  • 32. Erünal E, Ulusal F, Aslan MY, Güzel B, Üner D. Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO2 deposition method. International Journal of Hydrogen Energy. 2017; https://doi.org/10.1016/j.ijhydene.2017.12.058, in press.
Yıl 2018, Cilt: 5 Sayı: 2, 635 - 652, 01.01.2018
https://doi.org/10.18596/jotcsa.363662

Öz

Kaynakça

  • 1. Ulusal H, Fındıkkıran G, Demirkol O, Akbaşlar D, Giray ES. Supercritical diethylether: A novel solvent for the synthesis of aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. The Journal of Supercritical Fluids. 2015;105;146–50.
  • 2. Ulusal F, Darendeli B, Erünal E, Eğitmen A, Güzel B. Supercritical carbondioxide deposition of γ-Alumina supported Pd nanocatalysts with new precursors and using on Suzuki-Miyaura coupling reactions. The Journal of Supercritical Fluids. 2017;127;111–20.
  • 3. Daoush WM, Lim BK, Mo CB, Nam DH, Hong SH. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Materials Science and Engineering: A. 2009;513–514;247–53.
  • 4. Park PW, Ledford JS. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane. Applied Catalysis B: Environmental. 1998;15;221–31.
  • 5. Rather S, Zacharia R, Hwang SW, Naik M, Nahm KS. Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method. Chemical Physics Letters. 2007;441;261–7.
  • 6. Cangul B, Zhang LC, Aindow M, Erkey C. Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO2 deposition. The Journal of Supercritical Fluids. 2009; 50; 82–90.
  • 7. Parker HL, Rylott EL, Hunt AJ, Dodson JR, Taylor AF, Bruce NC, Clark JH. Supported Palladium Nanoparticles Synthesized by Living Plants as a Catalyst for Suzuki-Miyaura Reactions. Plos one. 2014; 9; 1-6.
  • 8. Du H, Li B, Kang F, Fu R, Zeng Y. Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon. 2007; 45; 429-35.
  • 9. Zhang Y, Erkey C. Preparation of supported metallic nanoparticles using supercritical fluids: A review. The Journal of Supercritical Fluids. 2006;38;252–67.
  • 10. Dobrovolna Z, Kacer P, Cerveny L. Competitive hydrogenation in alkene–alkyne–diene systems with palladium and platinum catalysts. Journal of Molecular Catalysis A: Chemical. 1998;130;279-84.
  • 11. Ye XR, Lin Y, Whang C, Engelhard MH, Wang Y, Wai CM. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. Journal of Materials Chemistry. 2004;14;908-13.
  • 12. Lin Y, Cui X, Ye X. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications. 2005;7;267-74.
  • 13. Cabanas A, Blackburn J, Watkins J. Deposition of Cu films from supercritical fluids using Cu(I) β-diketonate precursors. Microelectronic Engineering. 2002;64;53-61.
  • 14. Erkey C. Preparation of metallic supported nanoparticles and films using supercritical fluid deposition. The Journal of Supercritical Fluids. 2009;3;517–22.
  • 15. Teoh WH, Mammucari R, Foster NR. Solubility of organometallic complexes in supercritical carbon dioxide: A review. Journal of Organometallic Chemistry. 2013;724;102-16.
  • 16. Guzel B, Avşar G, Çınkır H. Supercritical Carbon Dioxide-Soluble Fluorus vic-Dioxime Ligands and their NiII Complexes: Synthesis, Characterization and Solubility Properties. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2007;37;801-4.
  • 17. Smart NG, Carleson T, Kast T, Clifford AA, Burford MD, Wai CM. Solubility of chelating agents and metal-containing compounds in supercritical fluid carbon dioxide. Talanta. 1997; 44; 137-50.
  • 18. Peng Q, Hojo D, Park KJ, Parsons GN. Low temperature metal oxide film deposition and reaction kinetics in supercritical carbon dioxide. Thin Solid Films. 2008;516;4997–5003.
  • 19. Yildirim B, Özcan E, Deveci P. New glyoxime derivatives and their transition metal complexes. Russian Journal of Coordination Chemistry. 2007;33;417–21.
  • 20. Ulusal F, Güzel B. Deposition of palladium by the hydrogen assisted on SBA-15 with a new precursor using supercritical carbon dioxide. The Journal of Supercritical Fluids. 2018; 133; 233–8.
  • 21. Chandima A, Arthur DB. Efficient Synthesis of 1,4,5,12-Tetraazatriphenylene and Derivatives. Journal of American Chemical Society. 2004;69;7741-4.
  • 22. Lam F, Hu X. A new system design for the preparation of copper/activated carbon catalyst by metal-organic chemical vapor deposition method. Chemical Engineering Science. 2003;58;687 – 95.
  • 23. Dervishi E, Li Z, Shyaka J, Watanabe F, Biswas A, Umwungeri JL, Courte A, Biris AB, Kebdani O, Biris AS. The role of hydrocarbon concentration on the synthesis of large area few to multi-layer graphene structures. Chemical Physics Letters. 2011;501;390–5.
  • 24. Yüksel F, Gümüş G, Gürol İ, Ahsen V, Chumakov Y, Jeanneaub E, Luneau D. Channel architecture via self assembly of oxamide oximes complexes. Dalton Transactions. 2008;0; 241–52.
  • 25. Gürol İ, Ahsen V, Bekaroğlu Ö. Synthesis of soluble complexes from a tetradentate dithioglyoxime ligand. Journal of the Chemical Society, Dalton Transactions. 1992; 0; 2283-6.
  • 26. Singh MS, Singh AK. Heterocyclization of vicinal dioximes to seven membered N, P and O heterocycles. Indian Journal of Chemistry –B. 2000; 32; 551-3.
  • 27. Burakevi JV, Lore AM, Volpp GP. Phenylglyoxime. Separation, characterization, and structure of three isomers. The Journal of Organic Chemistry. 1971; 36; 1-4.
  • 28. Özcan E, Karapınar E, Demirtas B. Synthesis of four new vic-dioximes and their nickel(II), cobalt(II), copper(II) and cadmium(II) complexes. Transition Metal Chemistry. 2002; 27; 557-61.
  • 29. Rajkumar K, Aravindan S. Tribological studies on microwave sintered copper–carbon nanotube composites. Wear. 2011;270;613–21.
  • 30. Wu HX, Zhang CX, Jin L, Yang H, Yang SP. Preparation and magnetic properties of cobalt nanoparticles with dendrimers as templates. Materials Chemistry and Physics. 2010;121;342-8.
  • 31. Brintzinger H, Titzmann R. Notiz über einige halogenierte aliphatische Oxime. Chemische Berichte.1952;85;344-5.
  • 32. Erünal E, Ulusal F, Aslan MY, Güzel B, Üner D. Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO2 deposition method. International Journal of Hydrogen Energy. 2017; https://doi.org/10.1016/j.ijhydene.2017.12.058, in press.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Fatma Ulusal

Bilgehan Güzel

Yayımlanma Tarihi 1 Ocak 2018
Gönderilme Tarihi 7 Aralık 2017
Kabul Tarihi 31 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 2

Kaynak Göster

Vancouver Ulusal F, Güzel B. The Synthesis and Characterization of Novel Pd and Cu vic-dioxime precursors for Their Supercritical Deposition on Multiwalled Carbon Nanotubes. JOTCSA. 2018;5(2):635-52.