Synthesis and Characterization of Jeffamine Core PAMAM Dendrimer-Silver Nanocomposites (Ag JCPDNCs) and Their Evaluation in The Reduction of 4-Nitrophenol
Yıl 2018,
Cilt: 5 Sayı: 2, 885 - 894, 01.01.2018
Mustafa Ulvi Gürbüz
,
Ali Serol Ertürk
Öz
This paper presents the synthesis,
characterization and catalytic evaluation of Jeffamine core PAMAM
dendrimer-silver nanocomposites (Ag JCPDNCs). Generation-4 Jeffamine core PAMAM
dendrimer (JCPD or P4.NH2) was used as the stabilizing templating
agent for the synthesis of Ag-JCPDNCs. Characterization of the synthesized Ag
JCPDNC was performed by UV visible (UV-Vis) spectroscopy and high resolution
transmission electron microscopy (HRTEM). The catalytic activity of dendrimer
nanocomposite (DNC) was assessed on the reduction of 4-nitrophenol (4-NP) to 4
aminophenol (4-AMP) in the presence of sodium borohydride (NaBH4) as
reducing agent by monitoring the conversion at λ 400 nm. The prepared Ag
JCPDNCs displayed a good catalytic activity (K = 0.12 x 10-2 s-1)
for the model reduction reaction of 4-NP with the particle size distribution of
4.72 ± 0.81 nm, which offer
a mixed type (interior and exterior) of DNC formation. The Ag JCPDNCs can be a
valid complete alternative to their existing candidates in the literature with
their different polymeric organics components and be great potential for the
future studies as new materials.
Kaynakça
- 1. Daniel MC, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. Chem Rev. 2004;104(1):293-346.
- 2. Lkhagvajav N, Yaşa I, Çelik E, Koizhaiganova M, Sari O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig J Nanomat Biostr. 2011;6(1):149-54.
- 3. Ertürk AS, Elmacı G. PAMAM Dendrimer Functionalized Manganese Ferrite Magnetic Nanoparticles: Microwave-Assisted Synthesis and Characterization. J Inorg Organomet Polym Mater. 2018.
- 4. Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature. 1994;370(6488):354-7.
- 5. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078-81.
- 6. Reetz MT, Winter M. Fabrication of metallic and bimetallic nanostructures by electron beam induced metallization of surfactant stabilized Pd and Pd/Pt clusters. J Am Chem Soc. 1997;119(19):4539-40.
- 7. Schön G, Simon U. A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics - Part II: Future directions. Colloid Polym Sci. 1995;273(3):202-18.
- 8. Chen HC, Liu YC. Creating functional water by treating excited gold nanoparticles for the applications of green chemistry, energy and medicine: A review. J Ind Eng Chem. 2018;60:9-18.
- 9. Patnaik S, Sahoo DP, Parida K. An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renewable Sustainable Energy Rev. 2018;82:1297-312.
- 10. Xiao W, Lei W, Gong M, Xin HL, Wang D. Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catal. 2018;8(4):3237-56.
- 11. Goikolea E, Insausti M, Lezama L, Gil de Muro I, Garitaonandia JS. Magnetic and structural characterization of silver-iron oxide nanoparticles obtained by the microemulsion technique. J Non-Cryst Solids. 2008;354(47-51):5216-8.
- 12. Manesh KM, Gopalan AI, Lee KP, Komathi S. Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergistic influence for catalysis. Catal Commun. 2010;11(10):913-8.
- 13. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V. Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal Lett. 2009;128(1-2):197-202.
- 14. Nemanashi M, Meijboom R. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci. 2013;389(1):260-7.
- 15. Bingwa N, Meijboom R. Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol. J Mol Catal A: Chem. 2015;396:1-7.
- 16. Esumi K, Isono R, Yoshimura T. Preparation of PAMAM− and PPI−Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir. 2004;20(1):237-43.
- 17. Wu H, Liu Z, Wang X, Zhao B, Zhang J, Li C. Preparation of hollow capsule-stabilized gold nanoparticles through the encapsulation of the dendrimer. J Colloid Interface Sci. 2006;302(1):142-8.
- 18. Ertürk AS, Gürbüz MU, Tülü M, Bozdoǧan AE. Preparation of Cu nanocomposites from EDA, DETA, and Jeffamine cored PAMAM dendrimers with TRIS and carboxyl surface functional groups. Acta Chim Slov. 2016;63(4):763-71.
- 19. Feng ZV, Lyon JL, Croley JS, Crooks RM, Vanden Bout DA, Stevenson KJ. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles. An Undergraduate Experiment Exploring Catalytic Nanomaterials. J Chem Educ. 2009;86(3):368.
- 20. Ma Z, Wu R, Han Q, Chen R, Gu Z. Preparation of well-dispersed and anti-oxidized Ni nanoparticles using polyamioloamine dendrimers as templates and their catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol. Korean J Chem Eng. 2011;28(3):717-22.
- 21. Antonels NC, Meijboom R. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the langmuir-hinshelwood approach. Langmuir. 2013;29(44):13433-42.
- 22. Tang YH, Huang AYT, Chen PY, Chen HT, Kao CL. Metallodendrimers and dendrimer nanocomposites. Catal Commun. 2011;17(22):2308-30.
- 23. Lesniak W, Blelinska AU, Sun K, Janczak KW, Shi X, Baker Jr JR, et al. Silver/dendrimer nanocomposites as biomarkers: Fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 2005;5(11):2123-30.
- 24. Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996;271(5251):933-7.
- 25. Knapen JWJ, van dMAW, de WJC, van LPWNM, Wijkens P, Grove DM, et al. Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes. Nature 1994;372(6507):659-63.
- 26. Tomalia DA, Dvornic PR. What promise for dendrimers? Nature. 1994;372(6507):617-8.
- 27. Balogh L, Tomalia DA. Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters. J Am Chem Soc. 1998;120(29):7355-6.
- 28. Van HR, Kamer PCJ, Van LPWNM, Reek JNH. Dendrimers as Support for Recoverable Catalysts and Reagents. Chem Rev 2002;102(10):3717-56.
- 29. Iinuma Y, Brueggemann E, Gnauk T, Mueller K, Andreae MO, Helas G, et al. Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J Geophys Res. 2007;112(D8):D08209/1-D/26.
- 30. Mori T, Watanuki T, Kashiwagura T. Diesel exhaust particles disturb gene expression in mouse testis. Environ Toxicol. 2007;22(1):58-63.
- 31. Li C, Taneda S, Suzuki AK, Furuta C, Watanabe G, Taya K. Estrogenic and anti-androgenic activities of 4-nitrophenol in diesel exhaust particles. Toxicol Appl Pharmacol. 2006;217(1):1-6.
- 32. Rode CV, Vaidya MJ, Jaganathan R, Chaudhari RV. Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: Reaction kinetics and mass transfer effects. Chem Eng Sci. 2001;56(4):1299-304.
- 33. Chen R, Wang Q, Du Y, Xing W, Xu N. Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem Eng J. 2009;145(3):371-6.
- 34. Ertürk AS, Tülü M, Bozdoğan AE, Parali T. Microwave assisted synthesis of Jeffamine cored PAMAM dendrimers. Eur Polym J. 2014;52:218-26.
- 35. Nemanashi M, Meijboom R. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. Journal of Colloid and Interface Science. 2013;389(1):260-7.
- 36. Subhas G, Sangeeta Y, Nadarajah V, Gabriela S. A study of antimicrobial property of textile fabric treated with modified dendrimers. J Appl Polym Sci. 2010;115(2):716-22.
- 37. Manna A, Imae T, Aoi K, Okada M, Yogo T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: Comparison of size between silver and gold particles. Chem Mater. 2001;13(5):1674-81.
- 38. Esumi K, Suzuki A, Yamahira A, Torigoe K. Role of poly (amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir. 2000;16(6):2604-8.
- 39. Balogh L, Valluzzi R, Laverdure KS, Gido SP, Hagnauer GL, Tomalia DA. Formation of Silver and Gold Dendrimer Nanocomposites. J Nanopart Res. 1999;1(3):353-68.
- 40. Manniledam K, R. PM, Edamana P, C. V, C. DP. Generation of Ag Nanoparticles by PAMAM Dendrimers and their Size Dependence on the Aggregation Behavior of Dendrimers. Macromol Chem Phys. 2009;210(16):1310-8.
- 41. Santos KdO, Elias WC, Signori AM, Giacomelli FC, Yang H, Domingos JB. Synthesis and Catalytic Properties of Silver Nanoparticle–Linear Polyethylene Imine Colloidal Systems. J Phys Chem C. 2012;116(7):4594-604.
- 42. Kurtan U, Baykal A. Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol. Mater Res Bull. 2014;60:79-87.
- 43. Pradhan N, Pal A, Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir. 2001;17(5):1800-2.
- 44. Corma A, Concepción P, Serna P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew Chem. 2007;46(38):7266-9.
- 45. Martinho N, Florindo H, Silva L, Brocchini S, Zloh M, Barata T. Molecular Modeling to Study Dendrimers for Biomedical Applications. Molecules (Basel, Switzerland). 2014;19(12):20424-67.
- 46. Lee I, Athey BD, Wetzel AW, Meixner W, Baker Jr JR. Structural molecular dynamics studies on polyamidoamine dendrimers for a therapeutic application: Effects of pH and generation. Macromolecules. 2002;35(11):4510-20.
- 47. Maiti PK, Çaǧın T, Lin S-T, Goddard WA. Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules. 2005;38(3):979-91.
- 48. Chen W, Tomalia DA, Thomas JL. Unusual pH-dependent polarity changes in PAMAM dendrimers: evidence for pH-responsive conformational changes. Macromolecules. 2000;33(25):9169-72.
Yıl 2018,
Cilt: 5 Sayı: 2, 885 - 894, 01.01.2018
Mustafa Ulvi Gürbüz
,
Ali Serol Ertürk
Kaynakça
- 1. Daniel MC, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. Chem Rev. 2004;104(1):293-346.
- 2. Lkhagvajav N, Yaşa I, Çelik E, Koizhaiganova M, Sari O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig J Nanomat Biostr. 2011;6(1):149-54.
- 3. Ertürk AS, Elmacı G. PAMAM Dendrimer Functionalized Manganese Ferrite Magnetic Nanoparticles: Microwave-Assisted Synthesis and Characterization. J Inorg Organomet Polym Mater. 2018.
- 4. Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature. 1994;370(6488):354-7.
- 5. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078-81.
- 6. Reetz MT, Winter M. Fabrication of metallic and bimetallic nanostructures by electron beam induced metallization of surfactant stabilized Pd and Pd/Pt clusters. J Am Chem Soc. 1997;119(19):4539-40.
- 7. Schön G, Simon U. A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics - Part II: Future directions. Colloid Polym Sci. 1995;273(3):202-18.
- 8. Chen HC, Liu YC. Creating functional water by treating excited gold nanoparticles for the applications of green chemistry, energy and medicine: A review. J Ind Eng Chem. 2018;60:9-18.
- 9. Patnaik S, Sahoo DP, Parida K. An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renewable Sustainable Energy Rev. 2018;82:1297-312.
- 10. Xiao W, Lei W, Gong M, Xin HL, Wang D. Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catal. 2018;8(4):3237-56.
- 11. Goikolea E, Insausti M, Lezama L, Gil de Muro I, Garitaonandia JS. Magnetic and structural characterization of silver-iron oxide nanoparticles obtained by the microemulsion technique. J Non-Cryst Solids. 2008;354(47-51):5216-8.
- 12. Manesh KM, Gopalan AI, Lee KP, Komathi S. Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergistic influence for catalysis. Catal Commun. 2010;11(10):913-8.
- 13. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V. Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal Lett. 2009;128(1-2):197-202.
- 14. Nemanashi M, Meijboom R. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci. 2013;389(1):260-7.
- 15. Bingwa N, Meijboom R. Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol. J Mol Catal A: Chem. 2015;396:1-7.
- 16. Esumi K, Isono R, Yoshimura T. Preparation of PAMAM− and PPI−Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir. 2004;20(1):237-43.
- 17. Wu H, Liu Z, Wang X, Zhao B, Zhang J, Li C. Preparation of hollow capsule-stabilized gold nanoparticles through the encapsulation of the dendrimer. J Colloid Interface Sci. 2006;302(1):142-8.
- 18. Ertürk AS, Gürbüz MU, Tülü M, Bozdoǧan AE. Preparation of Cu nanocomposites from EDA, DETA, and Jeffamine cored PAMAM dendrimers with TRIS and carboxyl surface functional groups. Acta Chim Slov. 2016;63(4):763-71.
- 19. Feng ZV, Lyon JL, Croley JS, Crooks RM, Vanden Bout DA, Stevenson KJ. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles. An Undergraduate Experiment Exploring Catalytic Nanomaterials. J Chem Educ. 2009;86(3):368.
- 20. Ma Z, Wu R, Han Q, Chen R, Gu Z. Preparation of well-dispersed and anti-oxidized Ni nanoparticles using polyamioloamine dendrimers as templates and their catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol. Korean J Chem Eng. 2011;28(3):717-22.
- 21. Antonels NC, Meijboom R. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the langmuir-hinshelwood approach. Langmuir. 2013;29(44):13433-42.
- 22. Tang YH, Huang AYT, Chen PY, Chen HT, Kao CL. Metallodendrimers and dendrimer nanocomposites. Catal Commun. 2011;17(22):2308-30.
- 23. Lesniak W, Blelinska AU, Sun K, Janczak KW, Shi X, Baker Jr JR, et al. Silver/dendrimer nanocomposites as biomarkers: Fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 2005;5(11):2123-30.
- 24. Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996;271(5251):933-7.
- 25. Knapen JWJ, van dMAW, de WJC, van LPWNM, Wijkens P, Grove DM, et al. Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes. Nature 1994;372(6507):659-63.
- 26. Tomalia DA, Dvornic PR. What promise for dendrimers? Nature. 1994;372(6507):617-8.
- 27. Balogh L, Tomalia DA. Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters. J Am Chem Soc. 1998;120(29):7355-6.
- 28. Van HR, Kamer PCJ, Van LPWNM, Reek JNH. Dendrimers as Support for Recoverable Catalysts and Reagents. Chem Rev 2002;102(10):3717-56.
- 29. Iinuma Y, Brueggemann E, Gnauk T, Mueller K, Andreae MO, Helas G, et al. Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J Geophys Res. 2007;112(D8):D08209/1-D/26.
- 30. Mori T, Watanuki T, Kashiwagura T. Diesel exhaust particles disturb gene expression in mouse testis. Environ Toxicol. 2007;22(1):58-63.
- 31. Li C, Taneda S, Suzuki AK, Furuta C, Watanabe G, Taya K. Estrogenic and anti-androgenic activities of 4-nitrophenol in diesel exhaust particles. Toxicol Appl Pharmacol. 2006;217(1):1-6.
- 32. Rode CV, Vaidya MJ, Jaganathan R, Chaudhari RV. Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: Reaction kinetics and mass transfer effects. Chem Eng Sci. 2001;56(4):1299-304.
- 33. Chen R, Wang Q, Du Y, Xing W, Xu N. Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem Eng J. 2009;145(3):371-6.
- 34. Ertürk AS, Tülü M, Bozdoğan AE, Parali T. Microwave assisted synthesis of Jeffamine cored PAMAM dendrimers. Eur Polym J. 2014;52:218-26.
- 35. Nemanashi M, Meijboom R. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. Journal of Colloid and Interface Science. 2013;389(1):260-7.
- 36. Subhas G, Sangeeta Y, Nadarajah V, Gabriela S. A study of antimicrobial property of textile fabric treated with modified dendrimers. J Appl Polym Sci. 2010;115(2):716-22.
- 37. Manna A, Imae T, Aoi K, Okada M, Yogo T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: Comparison of size between silver and gold particles. Chem Mater. 2001;13(5):1674-81.
- 38. Esumi K, Suzuki A, Yamahira A, Torigoe K. Role of poly (amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir. 2000;16(6):2604-8.
- 39. Balogh L, Valluzzi R, Laverdure KS, Gido SP, Hagnauer GL, Tomalia DA. Formation of Silver and Gold Dendrimer Nanocomposites. J Nanopart Res. 1999;1(3):353-68.
- 40. Manniledam K, R. PM, Edamana P, C. V, C. DP. Generation of Ag Nanoparticles by PAMAM Dendrimers and their Size Dependence on the Aggregation Behavior of Dendrimers. Macromol Chem Phys. 2009;210(16):1310-8.
- 41. Santos KdO, Elias WC, Signori AM, Giacomelli FC, Yang H, Domingos JB. Synthesis and Catalytic Properties of Silver Nanoparticle–Linear Polyethylene Imine Colloidal Systems. J Phys Chem C. 2012;116(7):4594-604.
- 42. Kurtan U, Baykal A. Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol. Mater Res Bull. 2014;60:79-87.
- 43. Pradhan N, Pal A, Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir. 2001;17(5):1800-2.
- 44. Corma A, Concepción P, Serna P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew Chem. 2007;46(38):7266-9.
- 45. Martinho N, Florindo H, Silva L, Brocchini S, Zloh M, Barata T. Molecular Modeling to Study Dendrimers for Biomedical Applications. Molecules (Basel, Switzerland). 2014;19(12):20424-67.
- 46. Lee I, Athey BD, Wetzel AW, Meixner W, Baker Jr JR. Structural molecular dynamics studies on polyamidoamine dendrimers for a therapeutic application: Effects of pH and generation. Macromolecules. 2002;35(11):4510-20.
- 47. Maiti PK, Çaǧın T, Lin S-T, Goddard WA. Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules. 2005;38(3):979-91.
- 48. Chen W, Tomalia DA, Thomas JL. Unusual pH-dependent polarity changes in PAMAM dendrimers: evidence for pH-responsive conformational changes. Macromolecules. 2000;33(25):9169-72.