Voltammetric Analysis of Cephalexin and Cefazoline in Pharmaceutical Formulation and Biological Samples
Year 2019,
Volume: 6 Issue: 2, 217 - 224, 15.06.2019
Sabriye Perçin Özkorucuklu
,
Besnik Uka
Gizem Yıldırım Baştemur
Abstract
In this study, the electrochemical behaviors of cephalexin
and cefazoline on disposable pencil graphite electrode were investigated in phosphate
buffer at pH of 4.5 to 6.0 by differential pulse voltammetry. Sample analysis
was performed in phosphate buffer at the optimum medium determined for each
sample. Validation parameters were studied to show the correctness,
sensitivity, and consistency of the method developed for the cephalosporins. It
was concluded that disposable pencil graphite electrode could be used
effectively in the determination of cephalosporins. The limits of detection (S/N=3)
were found to be 0.115 mM and 0.303 mM, for cephalexin and cefazoline,
respectively. The analysis of these compounds in pharmaceutical formulations
and biological samples was carried out at defined optimum conditions. The
recovery values were around 100%.
References
- 1. Ierapetritou M, Muzzio F, Reklaitis G. Perspectives on the continuous manufacturing of powder-based pharmaceutical processes. AlChE J. 2016; 62: 1846–62.
- 2. Bungau S, Suciu R, Bumbu A, Cioca G, Tit DM. Study on hospital waste management in medical rehabilitation clinical hospital, baile felix. J. Environ. Prot. Ecol. 2015; 16: 980–7.
- 3. Adzitey F. Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review. World Vet. J. 2015, 5, 36–41.
- 4. Watkins Richard R, and Bonomo Robert A. "β-Lactam Antibiotics." Infectious Diseases (Fourth Edition). 2017; 1203-16.
- 5. Gupta S, Prakash R. Ninety second electrosynthesis of palladium nanocubes on ITO surface and its application in electrosensing of cefotaxime. Electroanalysis 2014; 26: 2337–41.
- 6. Mokh S, El Khatib M, Koubar M, Daher Z, Al Iskandarani M. Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in lebanon. Sci. Total Environ. 2017; 609: 830–41.
- 7. Neves MA, Silva GS, Brito NM, Araujo KCM, Marques EP, Silva LK. Aqueous ultrasound-assisted extraction for the determination of fluoroquinolones in mangrove sediment by high-performance liquid chromatography and fluorescence detector. J. Braz. Chem. Soc. 2018; 29: 24–32.
- 8. Perez RA, Albero B, Ferriz M, Tadeo JL. Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry. J.Pharm. Biomed. Anal. 2017; 146: 79–85.
- 9. Dai TT, Duan J, Li XH, Xu XD, Shi HM, Kang WJ. Determination of sulfonamide residues in food by capillary zone electrophoresis with on-line chemiluminescence detection based on an Ag(III) complex. Int. J. Mol. Sci. 2017; 18: 1286-97.
- 10. Jang MG, Jang MD, Park JH. Doxycycline as a new chiral selector in capillary electrophoresis. J. Chromatogr. A 2017; 1508: 176–81.
- 11. Moreno-Gonzalez D, Hamed AM, Gilbert-Lopez B, Gamiz-Gracia L, Garcia-Campana AM, Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. J. Chromatogr. A 2017; 1510: 100–7.
- 12. Bitas D, Samanidou VF, Effective cleanup for the determination of six quinolone residues in shrimp before HPLC with diode array detection in compliance with the European Union Decision 2002/657/EC. J. Sep. Sci. 2016; 39: 4805–11.
- 13. Samanidou V, Michaelidou K, Kabir A, Furton KG. Fabric phase sorptive extraction of selected penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode array detection. Food Chem. 2017; 224: 131–8.
- 14. Kong DZ, Xie ZJ, Liu LQ, Song SS, Kuang H, Xu CL. Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of vancomycin in raw milk and animal feed. Food Agric. Immunol. 2017; 28: 414–26.
- 15. Tang SP, Canfarotta F, Smolinska-Kempisty K, Piletska E, Guerreiro A, Piletsky S. A pseudo-ELISA based on molecularly imprinted nanoparticles for detection of gentamicin in real samples. Anal. Methods 2017; 9: 2853–8.
- 16. Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016; 81: 532–45.
17. Feier B, Ionel I, Cristea C, Ndulescu RS. Electrochemical behaviour of several penicillins at high potential. New J. Chem. 2017; 41: 12947–55.
- 18. Yang ZH, Ding XF, Guo Q, Wang Y, Lu ZW, Ou HC, Luo ZF, Lou XH. Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine. Sens. Actuators B Chem. 2017; 253: 1129–36.
- 19. Yu ZG, Lai RY. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta 2018; 176: 619–24.
- 20. Do Prado TM, Foguel MV, Goncalves LM, Sotomayor MDP. Beta-lactamase-based biosensor for the electrochemical determination of benzylpenicillin in milk. Sens. Actuators B Chem. 2015; 210: 254–8.
- 21. Gaudin V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017; 90: 363–77.
- 22. Florentina-Daniela M, Ana Maria T, Jean-Louis M, Alina V. Detection of antibiotics and evaluation of antibacterial activity with screen-printed electrodes. Sensors, 2018; 18: 901-27.
- 23. Perçin-Özkorucuklu S, Şahin Y, Alsancak G. Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors, 2008; 8: 8463-78.
- 24. Özcan A, Şahin Y. Preparation of selective and sensitive elekctrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum. Biosens. Bioelectron. 2010; 25: 2497-502.
- 25. Dilgin Y, Kızılkaya B, Giray-Dilgin D, Gökçel Hİ, Gorton L. Electrocatalytic oxidation of NADH using a pencil graphite electrode midified with quercetin. Colloids Surf., B. 2013; 102: 816-21.
26. Svorc L, Sochr J, Rievaj M, Tomcik P, Bustin D. Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Bioelectrochemistry, 2012; 88: 36-41.
- 27. Svorc L, Sochr J, Tomcik P, Rievaj M, Bust D. Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochim. Acta, 2012; 68: 227-34.
Year 2019,
Volume: 6 Issue: 2, 217 - 224, 15.06.2019
Sabriye Perçin Özkorucuklu
,
Besnik Uka
Gizem Yıldırım Baştemur
References
- 1. Ierapetritou M, Muzzio F, Reklaitis G. Perspectives on the continuous manufacturing of powder-based pharmaceutical processes. AlChE J. 2016; 62: 1846–62.
- 2. Bungau S, Suciu R, Bumbu A, Cioca G, Tit DM. Study on hospital waste management in medical rehabilitation clinical hospital, baile felix. J. Environ. Prot. Ecol. 2015; 16: 980–7.
- 3. Adzitey F. Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review. World Vet. J. 2015, 5, 36–41.
- 4. Watkins Richard R, and Bonomo Robert A. "β-Lactam Antibiotics." Infectious Diseases (Fourth Edition). 2017; 1203-16.
- 5. Gupta S, Prakash R. Ninety second electrosynthesis of palladium nanocubes on ITO surface and its application in electrosensing of cefotaxime. Electroanalysis 2014; 26: 2337–41.
- 6. Mokh S, El Khatib M, Koubar M, Daher Z, Al Iskandarani M. Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in lebanon. Sci. Total Environ. 2017; 609: 830–41.
- 7. Neves MA, Silva GS, Brito NM, Araujo KCM, Marques EP, Silva LK. Aqueous ultrasound-assisted extraction for the determination of fluoroquinolones in mangrove sediment by high-performance liquid chromatography and fluorescence detector. J. Braz. Chem. Soc. 2018; 29: 24–32.
- 8. Perez RA, Albero B, Ferriz M, Tadeo JL. Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry. J.Pharm. Biomed. Anal. 2017; 146: 79–85.
- 9. Dai TT, Duan J, Li XH, Xu XD, Shi HM, Kang WJ. Determination of sulfonamide residues in food by capillary zone electrophoresis with on-line chemiluminescence detection based on an Ag(III) complex. Int. J. Mol. Sci. 2017; 18: 1286-97.
- 10. Jang MG, Jang MD, Park JH. Doxycycline as a new chiral selector in capillary electrophoresis. J. Chromatogr. A 2017; 1508: 176–81.
- 11. Moreno-Gonzalez D, Hamed AM, Gilbert-Lopez B, Gamiz-Gracia L, Garcia-Campana AM, Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. J. Chromatogr. A 2017; 1510: 100–7.
- 12. Bitas D, Samanidou VF, Effective cleanup for the determination of six quinolone residues in shrimp before HPLC with diode array detection in compliance with the European Union Decision 2002/657/EC. J. Sep. Sci. 2016; 39: 4805–11.
- 13. Samanidou V, Michaelidou K, Kabir A, Furton KG. Fabric phase sorptive extraction of selected penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode array detection. Food Chem. 2017; 224: 131–8.
- 14. Kong DZ, Xie ZJ, Liu LQ, Song SS, Kuang H, Xu CL. Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of vancomycin in raw milk and animal feed. Food Agric. Immunol. 2017; 28: 414–26.
- 15. Tang SP, Canfarotta F, Smolinska-Kempisty K, Piletska E, Guerreiro A, Piletsky S. A pseudo-ELISA based on molecularly imprinted nanoparticles for detection of gentamicin in real samples. Anal. Methods 2017; 9: 2853–8.
- 16. Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016; 81: 532–45.
17. Feier B, Ionel I, Cristea C, Ndulescu RS. Electrochemical behaviour of several penicillins at high potential. New J. Chem. 2017; 41: 12947–55.
- 18. Yang ZH, Ding XF, Guo Q, Wang Y, Lu ZW, Ou HC, Luo ZF, Lou XH. Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine. Sens. Actuators B Chem. 2017; 253: 1129–36.
- 19. Yu ZG, Lai RY. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta 2018; 176: 619–24.
- 20. Do Prado TM, Foguel MV, Goncalves LM, Sotomayor MDP. Beta-lactamase-based biosensor for the electrochemical determination of benzylpenicillin in milk. Sens. Actuators B Chem. 2015; 210: 254–8.
- 21. Gaudin V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017; 90: 363–77.
- 22. Florentina-Daniela M, Ana Maria T, Jean-Louis M, Alina V. Detection of antibiotics and evaluation of antibacterial activity with screen-printed electrodes. Sensors, 2018; 18: 901-27.
- 23. Perçin-Özkorucuklu S, Şahin Y, Alsancak G. Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors, 2008; 8: 8463-78.
- 24. Özcan A, Şahin Y. Preparation of selective and sensitive elekctrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum. Biosens. Bioelectron. 2010; 25: 2497-502.
- 25. Dilgin Y, Kızılkaya B, Giray-Dilgin D, Gökçel Hİ, Gorton L. Electrocatalytic oxidation of NADH using a pencil graphite electrode midified with quercetin. Colloids Surf., B. 2013; 102: 816-21.
26. Svorc L, Sochr J, Rievaj M, Tomcik P, Bustin D. Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Bioelectrochemistry, 2012; 88: 36-41.
- 27. Svorc L, Sochr J, Tomcik P, Rievaj M, Bust D. Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochim. Acta, 2012; 68: 227-34.