Araştırma Makalesi
BibTex RIS Kaynak Göster

Molecular Interaction Between Cationic Polymer Polyethyleneimine and Rose Bengal Dye: A Spectroscopic Study

Yıl 2019, Cilt: 6 Sayı: 3, 311 - 318, 20.10.2019
https://doi.org/10.18596/jotcsa.504528

Öz

The
binding mechanism and polymer–fluorescence probe interactions
between
polyethyleneimine (PEI) and Rose Bengal (RB) was investigated by using UV–Vis
absorption, steady- state and time-resolved fluorescence spectroscopy
techniques since they remain major research topics in photophysics. The
spectroscopic data indicated that an unusual interactions for PEI-RB system was
occurred. Binding constants (KSV) and quantities of binding were calculated
with high linearity. Significant photophysical parameters as band shifts,
fluorescence quantum yields and fluorescence lifetimes were determined to
comprehend how photophysical and spectroscopic features of the dye compounds were
affected by the polymer. With this respect, this study is significant in terms
of gaining dye-polymer relationship to the literature.

Destekleyen Kurum

Atatürk University

Kaynakça

  • 1. Bayraktutan T, Onganer Y, Meral K. Polyelectrolyte-induced H-aggregation of Merocyanine 540 and its application in metal ions detection as a colorimetric sensor. Sens. Actuators, B . 2016;226:52-61.
  • 2. Takagishi T, Yoshikawa K, Hamano H, Kuroki N, Kozuka H. Specific Interaction Between Polyethylenimine And Azo Dyes Carrying Hydroxyl-Groups. J. Polym. Sci., Part A: Polym. Chem. . 1985;23(1):37-47.
  • 3. Kunath K, von Harpe A, Fischer D, Peterson H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Controlled Release. 2003;89(1):113-25.
  • 4. Bisset W, Jacobs H, Koshti N, Stark P, Gopalan A. Synthesis and metal ion complexation properties of a novel polyethyleneimine N-methylhydroxamic acid water soluble polymer. React. Funct. Polym. 2003;55(2):109-19.
  • 5. Kobayashi S, Hiroishi K, Tokunoh M, Saegusa T. Chelating Properties Of Linear And Branched Poly(Ethylenimines). Macromol. 1987;20(7):1496-500.
  • 6. Amara M, Kerdjoudj H. Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions - Application to the separation of metallic ions. Talanta. 2003;60(5):991-1001.
  • 7. Neckers DC. Rose-Bengal. J. Photochem. Photobiol., A 1989;47(1):1-29.
  • 8. Chang CC, Yang YT, Yang JC, Wu HD, Tsai T. Absorption and emission spectral shifts of rose bengal associated with DMPC liposomes. Dyes Pigm. 2008;79(2):170-
  • 9. Bayraktutan T, Onganer Y. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study. Spectrochim. Acta, Part A . 2017;171:90-6.
  • 10. Toprak M, Arik M. An investigation of energy transfer between coumarin 35 and xanthene derivatives in liquid medium. Turk. J. Chem. 2010;34(2):285-93.
  • 11. Atahan A, Orhan E. Photophysics, pH Sensing and Hydrolysis Study of a Novel 1,8-Naphthalimide Derivative. J. Turk. Chem. Soc., Sect. A: Chem. 2018;5(2):775-784.
  • 12. Kubin RF, Fletcher AN. Fluorescence Quantum Yields Of Some Rhodamine Dyes. J. Lumin. 1982;27(4):455-62.
  • 13. Vaitekonis S, Trinkunas G, Valkunas L. Red chlorophylls in the exciton model of photosystem I. Photosynth. Res. 2005;86(1-2):185-201.
  • 14. Gungor O, Durmus M, Ahsen V. Investigation of photochemical and photophysical properties of novel silicon(IV) phthalocyanines and their mu-oxo dimers. Turk. J. Chem. 2017;41(6):803-8.
  • 15. Moczek L, Nowakowska M. Novel water-soluble photosensitizers from chitosan. Biomacromol. 2007;8(2):433-8.
  • 16. Maruthamuthu M, Reddy JV. Binding Of Fluoride Onto Poly(N-Vinyl-2-Pyrrolidone). J. Polym. Sci., Part C: -Polym. Lett. 1984;22(10):569-73.
  • 17. Hong YN, Lam JWY, Tang BZ. Aggregation-induced emission. Chem. Soc. Rev. 2011;40(11):5361-88.
  • 18. Güzel E. Preparation and investigation of aggregation, fluorescence and singlet oxygen generation properties of gallium and metal-free phthalocyanines. J. Turk. Chem. Soc., Sect. A: Chem. 2019;5(3):1051-60.
  • 19. Wu WC, Chen CY, Tian YQ, Jang SH, Hong YN, Liu Y, et al. Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging. Adv. Funct. Mater. 2010;20(9):1413-23.
  • 20. Chen JW, Law CCW, Lam JWY, Dong YP, Lo SMF, Williams ID, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 2003;15(7):1535-46.
  • 21. Block MAB, Hecht S. Poly(propylene oxide)-poly(phenylene ethynylene) block and graft copolymers. Macromol. 2008;41(9):3219-27.
  • 22. Wehry EL. Principles Of Fluorescence Spectroscopy - Lakowicz,JR. Am. Sci. 1984;72(4):395-6.
  • 23. Lepecq JB. Citation Classic - A Fluorescent Complex Between Ethidium-Bromide And Nucleic-Acids - Physical-Chemical Characterization. Current Contents/Life Sci. 1984(35):16-20.
  • 24. Datta A, Mandal D, Pal SK, Bhattacharyya K. Intramolecular charge transfer processes in confined systems. Nile red in reverse micelles. J. Phys. Chem. B. 1997;101(49):10221-5.
  • 25. Ozcelik S, Atay NZ. Optical transition rates of a meso-substituted thiacarbocyanine in methanol-in-oil reverse micelles (vol 113, pg 1, 2005). J. Lumin. 2005;114(3-4):314-8.
  • 26. Thomas SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007;107(4):1339-86.
  • 27. Gur B, Meral K. The effect of poly(vinyl alcohol) on the photophysical properties of pyronin dyes in aqueous solution: A spectroscopic study. Spectrochim. Acta, Part A. 2013;101:306-13.
  • 28. Bayraktutan T, Meral K, Onganer Y. Photophysical properties of pyronin dyes in reverse micelles of AOT. J. Lumin. 2014;145:925-9.
Yıl 2019, Cilt: 6 Sayı: 3, 311 - 318, 20.10.2019
https://doi.org/10.18596/jotcsa.504528

Öz

Kaynakça

  • 1. Bayraktutan T, Onganer Y, Meral K. Polyelectrolyte-induced H-aggregation of Merocyanine 540 and its application in metal ions detection as a colorimetric sensor. Sens. Actuators, B . 2016;226:52-61.
  • 2. Takagishi T, Yoshikawa K, Hamano H, Kuroki N, Kozuka H. Specific Interaction Between Polyethylenimine And Azo Dyes Carrying Hydroxyl-Groups. J. Polym. Sci., Part A: Polym. Chem. . 1985;23(1):37-47.
  • 3. Kunath K, von Harpe A, Fischer D, Peterson H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Controlled Release. 2003;89(1):113-25.
  • 4. Bisset W, Jacobs H, Koshti N, Stark P, Gopalan A. Synthesis and metal ion complexation properties of a novel polyethyleneimine N-methylhydroxamic acid water soluble polymer. React. Funct. Polym. 2003;55(2):109-19.
  • 5. Kobayashi S, Hiroishi K, Tokunoh M, Saegusa T. Chelating Properties Of Linear And Branched Poly(Ethylenimines). Macromol. 1987;20(7):1496-500.
  • 6. Amara M, Kerdjoudj H. Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions - Application to the separation of metallic ions. Talanta. 2003;60(5):991-1001.
  • 7. Neckers DC. Rose-Bengal. J. Photochem. Photobiol., A 1989;47(1):1-29.
  • 8. Chang CC, Yang YT, Yang JC, Wu HD, Tsai T. Absorption and emission spectral shifts of rose bengal associated with DMPC liposomes. Dyes Pigm. 2008;79(2):170-
  • 9. Bayraktutan T, Onganer Y. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study. Spectrochim. Acta, Part A . 2017;171:90-6.
  • 10. Toprak M, Arik M. An investigation of energy transfer between coumarin 35 and xanthene derivatives in liquid medium. Turk. J. Chem. 2010;34(2):285-93.
  • 11. Atahan A, Orhan E. Photophysics, pH Sensing and Hydrolysis Study of a Novel 1,8-Naphthalimide Derivative. J. Turk. Chem. Soc., Sect. A: Chem. 2018;5(2):775-784.
  • 12. Kubin RF, Fletcher AN. Fluorescence Quantum Yields Of Some Rhodamine Dyes. J. Lumin. 1982;27(4):455-62.
  • 13. Vaitekonis S, Trinkunas G, Valkunas L. Red chlorophylls in the exciton model of photosystem I. Photosynth. Res. 2005;86(1-2):185-201.
  • 14. Gungor O, Durmus M, Ahsen V. Investigation of photochemical and photophysical properties of novel silicon(IV) phthalocyanines and their mu-oxo dimers. Turk. J. Chem. 2017;41(6):803-8.
  • 15. Moczek L, Nowakowska M. Novel water-soluble photosensitizers from chitosan. Biomacromol. 2007;8(2):433-8.
  • 16. Maruthamuthu M, Reddy JV. Binding Of Fluoride Onto Poly(N-Vinyl-2-Pyrrolidone). J. Polym. Sci., Part C: -Polym. Lett. 1984;22(10):569-73.
  • 17. Hong YN, Lam JWY, Tang BZ. Aggregation-induced emission. Chem. Soc. Rev. 2011;40(11):5361-88.
  • 18. Güzel E. Preparation and investigation of aggregation, fluorescence and singlet oxygen generation properties of gallium and metal-free phthalocyanines. J. Turk. Chem. Soc., Sect. A: Chem. 2019;5(3):1051-60.
  • 19. Wu WC, Chen CY, Tian YQ, Jang SH, Hong YN, Liu Y, et al. Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging. Adv. Funct. Mater. 2010;20(9):1413-23.
  • 20. Chen JW, Law CCW, Lam JWY, Dong YP, Lo SMF, Williams ID, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 2003;15(7):1535-46.
  • 21. Block MAB, Hecht S. Poly(propylene oxide)-poly(phenylene ethynylene) block and graft copolymers. Macromol. 2008;41(9):3219-27.
  • 22. Wehry EL. Principles Of Fluorescence Spectroscopy - Lakowicz,JR. Am. Sci. 1984;72(4):395-6.
  • 23. Lepecq JB. Citation Classic - A Fluorescent Complex Between Ethidium-Bromide And Nucleic-Acids - Physical-Chemical Characterization. Current Contents/Life Sci. 1984(35):16-20.
  • 24. Datta A, Mandal D, Pal SK, Bhattacharyya K. Intramolecular charge transfer processes in confined systems. Nile red in reverse micelles. J. Phys. Chem. B. 1997;101(49):10221-5.
  • 25. Ozcelik S, Atay NZ. Optical transition rates of a meso-substituted thiacarbocyanine in methanol-in-oil reverse micelles (vol 113, pg 1, 2005). J. Lumin. 2005;114(3-4):314-8.
  • 26. Thomas SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007;107(4):1339-86.
  • 27. Gur B, Meral K. The effect of poly(vinyl alcohol) on the photophysical properties of pyronin dyes in aqueous solution: A spectroscopic study. Spectrochim. Acta, Part A. 2013;101:306-13.
  • 28. Bayraktutan T, Meral K, Onganer Y. Photophysical properties of pyronin dyes in reverse micelles of AOT. J. Lumin. 2014;145:925-9.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Tuğba Bayraktutan 0000-0002-9314-776X

Yayımlanma Tarihi 20 Ekim 2019
Gönderilme Tarihi 28 Aralık 2018
Kabul Tarihi 15 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 3

Kaynak Göster

Vancouver Bayraktutan T. Molecular Interaction Between Cationic Polymer Polyethyleneimine and Rose Bengal Dye: A Spectroscopic Study. JOTCSA. 2019;6(3):311-8.