Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 1, 65 - 76, 15.02.2020
https://doi.org/10.18596/jotcsa.565460

Abstract

References

  • 1. Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A, Yildirim T, Farha OK, Bagheri N, Snurr RQ. Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design & Engineering. 2019;4(1):162-74.
  • 2. Gómez-Gualdrón DA, Wang TC, García-Holley P, Sawelewa RM, Argueta E, Snurr RQ, Hupp JT, Yildirim T, Farha OK. Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks. ACS Applied Materials & Interfaces. 2017;9(39):33419-28.
  • 3. Mason JA, Veenstra M, Long JR. Evaluating metal–organic frameworks for natural gas storage. Chemical Science. 2014;5(1):32-51.
  • 4. Stadie NP, Vajo JJ, Cumberland RW, Wilson AA, Ahn CC, Fultz B. Zeolite-templated carbon materials for high-pressure hydrogen storage. Langmuir. 2012;28(26):10057-63.
  • 5. Vitillo JG, Ricchiardi G, Spoto G, Zecchina A. Theoretical maximal storage of hydrogen in zeolitic frameworks. Physical Chemistry Chemical Physics. 2005;7(23):3948-54.
  • 6. Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry. 2010;2(11):944-8.
  • 7. Han SS, Furukawa H, Yaghi OM, Goddard Iii WA. Covalent organic frameworks as exceptional hydrogen storage materials. Journal of the American Chemical Society. 2008;130(35):11580-1.
  • 8. Rabbani MG, Sekizkardes AK, Kahveci Z, Reich TE, Ding R, El‐Kaderi HM. A 2D mesoporous imine‐linked covalent organic framework for high pressure gas storage applications. Chemistry–A European Journal. 2013;19(10):3324-8.
  • 9. García-Holley P, Schweitzer B, Islamoglu T, Liu Y, Lin L, Rodriguez S, Weston MH, Hupp JT, Gómez-Gualdrón DA, Yildirim T. Benchmark study of hydrogen storage in metal–organic frameworks under temperature and pressure swing conditions. ACS Energy Letters. 2018;3(3):748-54.
  • 10. Suh MP, Park HJ, Prasad TK, Lim D-W. Hydrogen storage in metal–organic frameworks. Chemical Reviews. 2011;112(2):782-835.
  • 11. Siegel D, Hardy B, Team H. Engineering an adsorbent-based hydrogen storage system: what have we learned 2015 [Available from: https://energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_ summit_siegel.pdf
  • 12. Langmi HW, Ren J, North B, Mathe M, Bessarabov D. Hydrogen storage in metal-organic frameworks: a review. Electrochimica Acta. 2014;128:368-92.
  • 13. Gulcay E, Erucar I. Molecular simulations of COFs, IRMOFs and ZIFs for adsorption-based separation of carbon tetrachloride from air. Journal of Molecular Graphics and Modelling. 2019;86:84-94.
  • 14. Furukawa H, Yaghi OM. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society. 2009;131(25):8875-83.
  • 15. Ding S-Y, Wang W. Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews. 2013;42(2):548-68.
  • 16. Basdogan Y, Keskin S. Simulation and modelling of MOFs for hydrogen storage. CrystEngComm. 2015;17(2):261-75.
  • 17. Ahmed A, Seth S, Purewal J, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications. 2019;10(1):1568.
  • 18. Cao D, Lan J, Wang W, Smit B. Lithium‐doped 3D covalent organic frameworks: high‐capacity hydrogen storage materials. Angewandte Chemie International Edition. 2009;48(26):4730-3.
  • 19. Assfour B, Seifert G. Adsorption of hydrogen in covalent organic frameworks: comparison of simulations and experiments. Microporous and Mesoporous Materials. 2010;133(1-3):59-65.
  • 20. Tong M, Lan Y, Qin Z, Zhong C. Computation-ready, experimental covalent organic framework for methane delivery: screening and material design. Journal of Physical Chemistry C. 2018;122(24):13009-16.
  • 21. Li Z, Feng X, Zou Y, Zhang Y, Xia H, Liu X, Mu Y. A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications. 2014;50(89):13825-8.
  • 22. Stegbauer L, Hahn MW, Jentys A, Savasci Gk, Ochsenfeld C, Lercher JA, Lotsch BV. Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering. Chemistry of Materials. 2015;27(23):7874-81.
  • 23. Li Z, Zhi Y, Feng X, Ding X, Zou Y, Liu X, Mu Y. An azine‐linked covalent organic framework: synthesis, characterization and efficient gas storage. Chemistry–A European Journal. 2015;21(34):12079-84.
  • 24. Ge R, Hao D, Shi Q, Dong B, Leng W, Wang C, Gao Y. Target synthesis of an azo (N=N) based covalent organic framework with high CO2-over-N2 selectivity and benign gas storage capability. Journal of Chemical & Engineering Data. 2016;61(5):1904-9.
  • 25. Neti VSPK, Wu X, Hosseini M, Bernal RA, Deng S, Echegoyen L. Synthesis of a phthalocyanine 2D covalent organic framework. CrystEngComm. 2013;15(36):7157-60.
  • 26. Kaleeswaran D, Vishnoi P, Murugavel R. [3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. Journal of Materials Chemistry C. 2015;3(27):7159-71.
  • 27. Kang Z, Peng Y, Qian Y, Yuan D, Addicoat MA, Heine T, Hu Z, Tee L, Guo Z, Zhao D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chemistry of Materials. 2016;28(5):1277-85.
  • 28. Bhunia A, Vasylyeva V, Janiak C. From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities. Chemical Communications. 2013;49(38):3961-3.
  • 29. Kahveci Z, Islamoglu T, Shar GA, Ding R, El-Kaderi HM. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm. 2013;15(8):1524-7.
  • 30. Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials. 2012;149(1):134-41.
  • 31. Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation. 2016;42(2):81-101.
  • 32. Ewald PP. Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen der Physik. 1921;369(3):253-87.
  • 33. Buch V. Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects. Journal of Chemical Physics. 1994;100(10):7610-29.
  • 34. Darkrim F, Levesque D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. The Journal of Chemical Physics. 1998;109(12):4981-4984.
  • 35. Feynman R, Hibbs A. Quantum mechanics and path integrals: McGraw-Hill, New York; 1965.
  • 36. Rappé AK, Casewit CJ, Colwell K, Goddard III WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society. 1992;114(25):10024-35.
  • 37. Bobbitt NS, Chen J, Snurr RQ. High-throughput screening of metal–organic frameworks for hydrogen storage at cryogenic temperature. Journal of Physical Chemistry C. 2016;120(48):27328-41.

Computational Screening of Covalent Organic Frameworks for Hydrogen Storage

Year 2020, Volume: 7 Issue: 1, 65 - 76, 15.02.2020
https://doi.org/10.18596/jotcsa.565460

Abstract

Covalent Organic
Frameworks (COFs) have been considered as promising materials for gas storage
applications due to their highly porous structures and tunable characteristics.
In this work, high-throughput molecular simulations were performed to screen
the recent Computation-Ready Experimental COF Database (CoRE-COF) for H2
storage a first time in the literature. Predictions for H2 uptakes
were first compared with the experimental data of several COFs. Motivated from
the good agreement between simulations and experiments, we performed
Grand Canonical
Monte Carlo (GCMC) simulations to compute volumetric H2 uptakes of
296 COFs at various temperatures and pressures and identified the best
candidates which exhibit a superior performance for H2 storage. COFs
outperformed several well-known MOFs such as HKUST-1, NU-125, NU-1000 series,
NOTT-112 and UiO-67 at 100bar/77K adsorption and 5bar/160K desorption
conditions.
We also examined the
effect of Feynman-Hibbs correction on simulated H2 isotherms and H2
working capacities of COFs to consider quantum effects at low temperatures.
Results showed that the
Feynman-Hibbs corrections do not affect the ranking of materials based on H2
working capacities, but slightly affect the predictions of H2 adsorption
isotherms.
We
finally examined the structure-performance relations and showed that density
and porosity are highly correlated with the volumetric H2 working
capacities of COFs. Results of this study will be highly
useful in guiding
future research and focusing experimental efforts on the
best COF adsorbents identified in this study. 



 

References

  • 1. Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A, Yildirim T, Farha OK, Bagheri N, Snurr RQ. Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design & Engineering. 2019;4(1):162-74.
  • 2. Gómez-Gualdrón DA, Wang TC, García-Holley P, Sawelewa RM, Argueta E, Snurr RQ, Hupp JT, Yildirim T, Farha OK. Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks. ACS Applied Materials & Interfaces. 2017;9(39):33419-28.
  • 3. Mason JA, Veenstra M, Long JR. Evaluating metal–organic frameworks for natural gas storage. Chemical Science. 2014;5(1):32-51.
  • 4. Stadie NP, Vajo JJ, Cumberland RW, Wilson AA, Ahn CC, Fultz B. Zeolite-templated carbon materials for high-pressure hydrogen storage. Langmuir. 2012;28(26):10057-63.
  • 5. Vitillo JG, Ricchiardi G, Spoto G, Zecchina A. Theoretical maximal storage of hydrogen in zeolitic frameworks. Physical Chemistry Chemical Physics. 2005;7(23):3948-54.
  • 6. Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry. 2010;2(11):944-8.
  • 7. Han SS, Furukawa H, Yaghi OM, Goddard Iii WA. Covalent organic frameworks as exceptional hydrogen storage materials. Journal of the American Chemical Society. 2008;130(35):11580-1.
  • 8. Rabbani MG, Sekizkardes AK, Kahveci Z, Reich TE, Ding R, El‐Kaderi HM. A 2D mesoporous imine‐linked covalent organic framework for high pressure gas storage applications. Chemistry–A European Journal. 2013;19(10):3324-8.
  • 9. García-Holley P, Schweitzer B, Islamoglu T, Liu Y, Lin L, Rodriguez S, Weston MH, Hupp JT, Gómez-Gualdrón DA, Yildirim T. Benchmark study of hydrogen storage in metal–organic frameworks under temperature and pressure swing conditions. ACS Energy Letters. 2018;3(3):748-54.
  • 10. Suh MP, Park HJ, Prasad TK, Lim D-W. Hydrogen storage in metal–organic frameworks. Chemical Reviews. 2011;112(2):782-835.
  • 11. Siegel D, Hardy B, Team H. Engineering an adsorbent-based hydrogen storage system: what have we learned 2015 [Available from: https://energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_ summit_siegel.pdf
  • 12. Langmi HW, Ren J, North B, Mathe M, Bessarabov D. Hydrogen storage in metal-organic frameworks: a review. Electrochimica Acta. 2014;128:368-92.
  • 13. Gulcay E, Erucar I. Molecular simulations of COFs, IRMOFs and ZIFs for adsorption-based separation of carbon tetrachloride from air. Journal of Molecular Graphics and Modelling. 2019;86:84-94.
  • 14. Furukawa H, Yaghi OM. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society. 2009;131(25):8875-83.
  • 15. Ding S-Y, Wang W. Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews. 2013;42(2):548-68.
  • 16. Basdogan Y, Keskin S. Simulation and modelling of MOFs for hydrogen storage. CrystEngComm. 2015;17(2):261-75.
  • 17. Ahmed A, Seth S, Purewal J, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications. 2019;10(1):1568.
  • 18. Cao D, Lan J, Wang W, Smit B. Lithium‐doped 3D covalent organic frameworks: high‐capacity hydrogen storage materials. Angewandte Chemie International Edition. 2009;48(26):4730-3.
  • 19. Assfour B, Seifert G. Adsorption of hydrogen in covalent organic frameworks: comparison of simulations and experiments. Microporous and Mesoporous Materials. 2010;133(1-3):59-65.
  • 20. Tong M, Lan Y, Qin Z, Zhong C. Computation-ready, experimental covalent organic framework for methane delivery: screening and material design. Journal of Physical Chemistry C. 2018;122(24):13009-16.
  • 21. Li Z, Feng X, Zou Y, Zhang Y, Xia H, Liu X, Mu Y. A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications. 2014;50(89):13825-8.
  • 22. Stegbauer L, Hahn MW, Jentys A, Savasci Gk, Ochsenfeld C, Lercher JA, Lotsch BV. Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering. Chemistry of Materials. 2015;27(23):7874-81.
  • 23. Li Z, Zhi Y, Feng X, Ding X, Zou Y, Liu X, Mu Y. An azine‐linked covalent organic framework: synthesis, characterization and efficient gas storage. Chemistry–A European Journal. 2015;21(34):12079-84.
  • 24. Ge R, Hao D, Shi Q, Dong B, Leng W, Wang C, Gao Y. Target synthesis of an azo (N=N) based covalent organic framework with high CO2-over-N2 selectivity and benign gas storage capability. Journal of Chemical & Engineering Data. 2016;61(5):1904-9.
  • 25. Neti VSPK, Wu X, Hosseini M, Bernal RA, Deng S, Echegoyen L. Synthesis of a phthalocyanine 2D covalent organic framework. CrystEngComm. 2013;15(36):7157-60.
  • 26. Kaleeswaran D, Vishnoi P, Murugavel R. [3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. Journal of Materials Chemistry C. 2015;3(27):7159-71.
  • 27. Kang Z, Peng Y, Qian Y, Yuan D, Addicoat MA, Heine T, Hu Z, Tee L, Guo Z, Zhao D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chemistry of Materials. 2016;28(5):1277-85.
  • 28. Bhunia A, Vasylyeva V, Janiak C. From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities. Chemical Communications. 2013;49(38):3961-3.
  • 29. Kahveci Z, Islamoglu T, Shar GA, Ding R, El-Kaderi HM. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm. 2013;15(8):1524-7.
  • 30. Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials. 2012;149(1):134-41.
  • 31. Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation. 2016;42(2):81-101.
  • 32. Ewald PP. Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen der Physik. 1921;369(3):253-87.
  • 33. Buch V. Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects. Journal of Chemical Physics. 1994;100(10):7610-29.
  • 34. Darkrim F, Levesque D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. The Journal of Chemical Physics. 1998;109(12):4981-4984.
  • 35. Feynman R, Hibbs A. Quantum mechanics and path integrals: McGraw-Hill, New York; 1965.
  • 36. Rappé AK, Casewit CJ, Colwell K, Goddard III WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society. 1992;114(25):10024-35.
  • 37. Bobbitt NS, Chen J, Snurr RQ. High-throughput screening of metal–organic frameworks for hydrogen storage at cryogenic temperature. Journal of Physical Chemistry C. 2016;120(48):27328-41.
There are 37 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Ezgi Gülçay This is me 0000-0002-8797-9893

İlknur Erucar Findikci 0000-0002-6059-6067

Publication Date February 15, 2020
Submission Date May 15, 2019
Acceptance Date November 18, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

Vancouver Gülçay E, Erucar Findikci İ. Computational Screening of Covalent Organic Frameworks for Hydrogen Storage. JOTCSA. 2020;7(1):65-76.