Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 1, 107 - 116, 15.02.2020
https://doi.org/10.18596/jotcsa.633901

Abstract

References

  • 1. McKeown NB. Phthalocyanine materials: synthesis, structure, and function. Cambridge, U.K. ; New York: Cambridge University Press; 1998. 193 p. (Chemistry of solid state materials).
  • 2. Gregory P. Industrial applications of phthalocyanines. Journal of Porphyrins and Phthalocyanines. 2000;4(4):432–7.
  • 3. Bekaroğlu Ö. Structure and Bonding. In: Functional Phthalocyanine Molecular Materials. Berlin, Heidelberg: Springer-Verlag; 2010. p. 105.
  • 4. Sevim AM, Arıkan S, Koca A, Gül A. Synthesis and spectroelectrochemistry of new phthalocyanines with ester functionalities. Dyes and Pigments. 2012 Mar;92(3):1114–21.
  • 5. Sevim AM, Ilgün C, Gül A. Preparation of heterogeneous phthalocyanine catalysts by cotton fabric dyeing. Dyes and Pigments. 2011 May;89(2):162–8.
  • 6. Arslanoglu Y, Mertsevim A, Hamuryudan E, Gul A. Near-IR absorbing phthalocyanines. Dyes and Pigments. 2006;68(2–3):129–32.
  • 7. Sevim AM. Synthesis and characterization of Zn and Co monocarboxy-phthalocyanines and investigation of their photocatalytic efficiency as TiO2 composites. Journal of Organometallic Chemistry. 2017 Mar;832:18–26.
  • 8. Akkurt B, Hamuryudan E. Enhancement of solubility via esterification: Synthesis and characterization of octakis (ester)-substituted phthalocyanines. Dyes and Pigments. 2008 Nov;79(2):153–8.
  • 9. Quinton D, Antunes E, Griveau S, Nyokong T, Bedioui F. Cyclic voltammetry and spectroelectrochemistry of a novel manganese phthalocyanine substituted with hexynyl groups. Inorganic Chemistry Communications. 2011 Jan;14(1):330–2.
  • 10. Chen X, Thomas J, Gangopadhyay P, Norwood RA, Peyghambarian N, McGrath DV. Modification of Symmetrically Substituted Phthalocyanines Using Click Chemistry: Phthalocyanine Nanostructures by Nanoimprint Lithography. J Am Chem Soc. 2009 Sep 30;131(38):13840–3.
  • 11. Sevim AM, Özçeşmeci İ, Gül A. Synthesis and photophysical properties of a novel ethynyl zinc(II) phthalocyanine and its functionalized derivative with click chemistry. J Porphyrins Phthalocyanines. 2013 Jun;17(06n07):540–7.
  • 12. Akkurt B, Koca A, Hamuryudan E. Synthesis, in situ spectroelectrochemistry and in situ electrocolorimetry of electrochromic octakis(chloroethylsulfanyl) phthalocyaninatomanganese(iii) chloride. New J Chem. 2009;33(11):2248.
  • 13. O’Flaherty SM, Hold SV, Cook MJ, Torres T, Chen Y, Hanack M, et al. Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Adv Mater. 2003 Jan 3;15(1):19–32.
  • 14. Allen CM, Sharman WM, Van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines. 2001 Feb;05(02):161–9.
  • 15. Iino H, Hanna J, Bushby RJ, Movaghar B, Whitaker BJ, Cook MJ. Very high time-of-flight mobility in the columnar phases of a discotic liquid crystal. Appl Phys Lett. 2005 Sep 26;87(13):132102.
  • 16. Cook MJ, McKeown NB, Simmons JM, Thomson AJ, Daniel MF, Harrison KJ, et al. Spectroscopic and X-ray diffraction study of Langmuir–Blodgett films of some 1,4,8,11,15,18-hexaalkyl-22,25-bis(carboxypropyl)phthalocyanines. J Mater Chem. 1991;1(1):121–7.
  • 17. O’Regan BC, López-Duarte I, Martínez-Díaz MV, Forneli A, Albero J, Morandeira A, et al. Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. J Am Chem Soc. 2008 Mar;130(10):2906–7.
  • 18. Bartelmess J, Ballesteros B, de la Torre G, Kiessling D, Campidelli S, Prato M, et al. Phthalocyanine−Pyrene Conjugates: A Powerful Approach toward Carbon Nanotube Solar Cells. J Am Chem Soc. 2010 Nov 17;132(45):16202–11.
  • 19. Kobayashi N, Miwa H, Nemykin VN. Adjacent versus Opposite Type Di-Aromatic Ring-Fused Phthalocyanine Derivatives: Synthesis, Spectroscopy, Electrochemistry, and Molecular Orbital Calculations. J Am Chem Soc. 2002 Jul;124(27):8007–20.
  • 20. de la Torre G, Claessens C, Torres T. Phthalocyanines: The Need for Selective Synthetic Approaches. European Journal of Organic Chemistry. 2000;2000(16):2821–30.
  • 21. Leznoff CC, Hall TW. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Letters. 1982 Jan;23(30):3023–6.
  • 22. Kobayashi N, Kondo R, Nakajima S, Osa T. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. J Am Chem Soc. 1990 Dec;112(26):9640–1.
  • 23. Dabak S, Gül A, Bekaroğlu Ö. Hexakis(alkylthio)-Substituted Unsymmetrical Phthalocyanines. Chem Ber. 1994 Oct;127(10):2009–12.
  • 24. Zhou J, Mi J, Zhu R, Li B, Qian S. Ultrafast excitation relaxation in titanylphthalocyanine thin film. Optical Materials. 2004 Dec;27(3):377–82.
  • 25. de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Commun. 2007;(20):2000–15.
  • 26. Zhang G, Zhang D, Guo X, Zhu D. A New Redox-Fluorescence Switch Based on a Triad with Tetrathiafulvalene and Anthracene Units. Org Lett. 2004 Apr;6(8):1209–12.
  • 27. Sevim AM, Arıkan S, Özçeşmeci İ, Gül A. Photophysical properties of anthracenylmethyloxycarbonylmethylsulfanyl-phthalocyanines. Synthetic Metals. 2013 Nov;183:1–7.
  • 28. Coşkun NY, Ödevci Ö, Yalçın SM, Gül A. Synthesis, Absorption and Fluorescence Spectral Investigation of Porphyrazines with Eight 9-Anthracenecarboxy Esters. Main Group Metal Chemistry [Internet]. 2007 Jan [cited 2019 Oct 11];30(2–3). Available from: https://www.degruyter.com/view/j/mgmc.2007.30.2-3/mgmc.2007.30.2-3.83/mgmc.2007.30.2-3.83.xml
  • 29. Snow A. Phthalocyanine Aggregation. In: The Porphyrin Handbook [Internet]. Amsterdam: Elsevier; 2003. p. 129–76. Available from: https://www.sciencedirect.com/book/9780080923918/the-porphyrin-handbook
  • 30. Wiggins M, Flom S, Shirk J, Pong R, Lepkowicz R, Ranade A. Abstract Papers American Chemical Society. Vol. 228. Washington: American Chemical Society (ACS); 2004.
  • 31. Zoller P, Walsh DJ. Standard pressure-volume-temperature data for polymers. Lancaster, PA: Technomic Pub. Co; 1995. 412 p.
  • 32. Bankole O, Britton J, Nyokong T. Photophysical and non-linear optical behavior of novel tetra alkynyl terminated indium phthalocyanines: Effects of the carbon chain length. Polyhedron. 2015;88:73–80.
  • 33. Kahouecha M, Hrizb K, Touaitia S, Bassem J. New anthracene-based-phtalocyanine semi-conducting materials: Synthesis and optoelectronic properties. Materials Research Bulletin. 2016;75:144–54.
  • 34. Masilela N, Nyokong T. The synthesis and fluorescence behaviour of new unsymmetrically mono-functionalized carboxy Ge, Ti and Sn phthalocyanines. Dyes and Pigments. 2011;91(2):164–9.
  • 35. Durmuş M, Nyokong T. Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2008 Apr;69(4):1170–7.
  • 36. Du H, Fuh R, Li J, Corkan L, Lindsey J. PhotochemCAD: A Computer‐Aided Design and Research Tool in Photochemistry. Photochemistry and Photobiology. 1998;68:141–8.
  • 37. Rose J. Advanced Physico-Chemical Experiments. London: Sir Isaac Pitman & Sons Ltd; 1964. 257 p.
  • 38. Bakboord J, Cook M, Hamuryudan E. Non-uniformly substituted phthalocyanines and related compounds: alkylated tribenzo-imidazolo [4, 5]-porphyrazines. Journal of Porphyrins and Phthalocyanines. 2000 Aug;4(5):510–7.
  • 39. Zorlu Y, Dumoulin F, Durmuş M, Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron. 2010;66(17):3248–58.
  • 40. Saka E, Durmuş M, Kantekin H. Solvent and central metal effects on the photophysical and photochemical properties of 4-benzyloxybenzoxy substituted phthalocyanines. J Organomet Chem. 2011;696:913–24.
  • 41. Gümrükcü G, Karaoglan G, Erdoğmuş A, Gül A, Avcıata U. A novel phthalocyanine conjugated with four salicylideneimino complexes: Photophysics and fluorescence quenching studies. Dyes Pigm. 2012;95:280–9.

Synthesis and photophysical properties of A3B-type non-symmetrically substituted anthracene-based zinc(II) phthalocyanine

Year 2020, Volume: 7 Issue: 1, 107 - 116, 15.02.2020
https://doi.org/10.18596/jotcsa.633901

Abstract


A novel unsymmetrical zinc(II) phthalocyanine (ZnPc) (3) with an
alkynyl functional group was prepared by an efficient mixed
statistical condensation of 4-((4-ethynylbenzyl)oxy)phthalonitrile
(1) and 4-(4-tertbutylphenoxy)phthalonitrile (2). FTIR, 1H NMR,
UV-Vis, elemental analysis, and MALDI-TOF were used to characterize
this new compound. Working with different concentrations, the
compound’s aggregation properties were investigated and concluded
that no aggregation tendency has been observed in the studied
concentration range (1.0 x 10-6 M to 1.2 x10-5 M). Fluorescent
quantum yields and lifetimes of the compound were studied and found
to be 0.09 and 0.57 ns, respectively. As a fluorescent quencher,
1,4-benzoquinone was used in the experiments at differing
concentrations in tetrahydrofuran. The kq values showed a close
follow-up to the diffusion control limits, around 1011 s-1 and they
seem to agree with Einstein-Smoluchowski’s approximation for
bimolecular, diffusion-control-including, interactions. For the new
compound, the KSV value was calculated as 27.55, which is lower than
that of unsubstituted ZnPc. The fluorescence of the studied compound
3 was effectively quenched by 1,4-benzoquinone.



References

  • 1. McKeown NB. Phthalocyanine materials: synthesis, structure, and function. Cambridge, U.K. ; New York: Cambridge University Press; 1998. 193 p. (Chemistry of solid state materials).
  • 2. Gregory P. Industrial applications of phthalocyanines. Journal of Porphyrins and Phthalocyanines. 2000;4(4):432–7.
  • 3. Bekaroğlu Ö. Structure and Bonding. In: Functional Phthalocyanine Molecular Materials. Berlin, Heidelberg: Springer-Verlag; 2010. p. 105.
  • 4. Sevim AM, Arıkan S, Koca A, Gül A. Synthesis and spectroelectrochemistry of new phthalocyanines with ester functionalities. Dyes and Pigments. 2012 Mar;92(3):1114–21.
  • 5. Sevim AM, Ilgün C, Gül A. Preparation of heterogeneous phthalocyanine catalysts by cotton fabric dyeing. Dyes and Pigments. 2011 May;89(2):162–8.
  • 6. Arslanoglu Y, Mertsevim A, Hamuryudan E, Gul A. Near-IR absorbing phthalocyanines. Dyes and Pigments. 2006;68(2–3):129–32.
  • 7. Sevim AM. Synthesis and characterization of Zn and Co monocarboxy-phthalocyanines and investigation of their photocatalytic efficiency as TiO2 composites. Journal of Organometallic Chemistry. 2017 Mar;832:18–26.
  • 8. Akkurt B, Hamuryudan E. Enhancement of solubility via esterification: Synthesis and characterization of octakis (ester)-substituted phthalocyanines. Dyes and Pigments. 2008 Nov;79(2):153–8.
  • 9. Quinton D, Antunes E, Griveau S, Nyokong T, Bedioui F. Cyclic voltammetry and spectroelectrochemistry of a novel manganese phthalocyanine substituted with hexynyl groups. Inorganic Chemistry Communications. 2011 Jan;14(1):330–2.
  • 10. Chen X, Thomas J, Gangopadhyay P, Norwood RA, Peyghambarian N, McGrath DV. Modification of Symmetrically Substituted Phthalocyanines Using Click Chemistry: Phthalocyanine Nanostructures by Nanoimprint Lithography. J Am Chem Soc. 2009 Sep 30;131(38):13840–3.
  • 11. Sevim AM, Özçeşmeci İ, Gül A. Synthesis and photophysical properties of a novel ethynyl zinc(II) phthalocyanine and its functionalized derivative with click chemistry. J Porphyrins Phthalocyanines. 2013 Jun;17(06n07):540–7.
  • 12. Akkurt B, Koca A, Hamuryudan E. Synthesis, in situ spectroelectrochemistry and in situ electrocolorimetry of electrochromic octakis(chloroethylsulfanyl) phthalocyaninatomanganese(iii) chloride. New J Chem. 2009;33(11):2248.
  • 13. O’Flaherty SM, Hold SV, Cook MJ, Torres T, Chen Y, Hanack M, et al. Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Adv Mater. 2003 Jan 3;15(1):19–32.
  • 14. Allen CM, Sharman WM, Van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines. 2001 Feb;05(02):161–9.
  • 15. Iino H, Hanna J, Bushby RJ, Movaghar B, Whitaker BJ, Cook MJ. Very high time-of-flight mobility in the columnar phases of a discotic liquid crystal. Appl Phys Lett. 2005 Sep 26;87(13):132102.
  • 16. Cook MJ, McKeown NB, Simmons JM, Thomson AJ, Daniel MF, Harrison KJ, et al. Spectroscopic and X-ray diffraction study of Langmuir–Blodgett films of some 1,4,8,11,15,18-hexaalkyl-22,25-bis(carboxypropyl)phthalocyanines. J Mater Chem. 1991;1(1):121–7.
  • 17. O’Regan BC, López-Duarte I, Martínez-Díaz MV, Forneli A, Albero J, Morandeira A, et al. Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. J Am Chem Soc. 2008 Mar;130(10):2906–7.
  • 18. Bartelmess J, Ballesteros B, de la Torre G, Kiessling D, Campidelli S, Prato M, et al. Phthalocyanine−Pyrene Conjugates: A Powerful Approach toward Carbon Nanotube Solar Cells. J Am Chem Soc. 2010 Nov 17;132(45):16202–11.
  • 19. Kobayashi N, Miwa H, Nemykin VN. Adjacent versus Opposite Type Di-Aromatic Ring-Fused Phthalocyanine Derivatives: Synthesis, Spectroscopy, Electrochemistry, and Molecular Orbital Calculations. J Am Chem Soc. 2002 Jul;124(27):8007–20.
  • 20. de la Torre G, Claessens C, Torres T. Phthalocyanines: The Need for Selective Synthetic Approaches. European Journal of Organic Chemistry. 2000;2000(16):2821–30.
  • 21. Leznoff CC, Hall TW. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Letters. 1982 Jan;23(30):3023–6.
  • 22. Kobayashi N, Kondo R, Nakajima S, Osa T. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. J Am Chem Soc. 1990 Dec;112(26):9640–1.
  • 23. Dabak S, Gül A, Bekaroğlu Ö. Hexakis(alkylthio)-Substituted Unsymmetrical Phthalocyanines. Chem Ber. 1994 Oct;127(10):2009–12.
  • 24. Zhou J, Mi J, Zhu R, Li B, Qian S. Ultrafast excitation relaxation in titanylphthalocyanine thin film. Optical Materials. 2004 Dec;27(3):377–82.
  • 25. de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Commun. 2007;(20):2000–15.
  • 26. Zhang G, Zhang D, Guo X, Zhu D. A New Redox-Fluorescence Switch Based on a Triad with Tetrathiafulvalene and Anthracene Units. Org Lett. 2004 Apr;6(8):1209–12.
  • 27. Sevim AM, Arıkan S, Özçeşmeci İ, Gül A. Photophysical properties of anthracenylmethyloxycarbonylmethylsulfanyl-phthalocyanines. Synthetic Metals. 2013 Nov;183:1–7.
  • 28. Coşkun NY, Ödevci Ö, Yalçın SM, Gül A. Synthesis, Absorption and Fluorescence Spectral Investigation of Porphyrazines with Eight 9-Anthracenecarboxy Esters. Main Group Metal Chemistry [Internet]. 2007 Jan [cited 2019 Oct 11];30(2–3). Available from: https://www.degruyter.com/view/j/mgmc.2007.30.2-3/mgmc.2007.30.2-3.83/mgmc.2007.30.2-3.83.xml
  • 29. Snow A. Phthalocyanine Aggregation. In: The Porphyrin Handbook [Internet]. Amsterdam: Elsevier; 2003. p. 129–76. Available from: https://www.sciencedirect.com/book/9780080923918/the-porphyrin-handbook
  • 30. Wiggins M, Flom S, Shirk J, Pong R, Lepkowicz R, Ranade A. Abstract Papers American Chemical Society. Vol. 228. Washington: American Chemical Society (ACS); 2004.
  • 31. Zoller P, Walsh DJ. Standard pressure-volume-temperature data for polymers. Lancaster, PA: Technomic Pub. Co; 1995. 412 p.
  • 32. Bankole O, Britton J, Nyokong T. Photophysical and non-linear optical behavior of novel tetra alkynyl terminated indium phthalocyanines: Effects of the carbon chain length. Polyhedron. 2015;88:73–80.
  • 33. Kahouecha M, Hrizb K, Touaitia S, Bassem J. New anthracene-based-phtalocyanine semi-conducting materials: Synthesis and optoelectronic properties. Materials Research Bulletin. 2016;75:144–54.
  • 34. Masilela N, Nyokong T. The synthesis and fluorescence behaviour of new unsymmetrically mono-functionalized carboxy Ge, Ti and Sn phthalocyanines. Dyes and Pigments. 2011;91(2):164–9.
  • 35. Durmuş M, Nyokong T. Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2008 Apr;69(4):1170–7.
  • 36. Du H, Fuh R, Li J, Corkan L, Lindsey J. PhotochemCAD: A Computer‐Aided Design and Research Tool in Photochemistry. Photochemistry and Photobiology. 1998;68:141–8.
  • 37. Rose J. Advanced Physico-Chemical Experiments. London: Sir Isaac Pitman & Sons Ltd; 1964. 257 p.
  • 38. Bakboord J, Cook M, Hamuryudan E. Non-uniformly substituted phthalocyanines and related compounds: alkylated tribenzo-imidazolo [4, 5]-porphyrazines. Journal of Porphyrins and Phthalocyanines. 2000 Aug;4(5):510–7.
  • 39. Zorlu Y, Dumoulin F, Durmuş M, Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron. 2010;66(17):3248–58.
  • 40. Saka E, Durmuş M, Kantekin H. Solvent and central metal effects on the photophysical and photochemical properties of 4-benzyloxybenzoxy substituted phthalocyanines. J Organomet Chem. 2011;696:913–24.
  • 41. Gümrükcü G, Karaoglan G, Erdoğmuş A, Gül A, Avcıata U. A novel phthalocyanine conjugated with four salicylideneimino complexes: Photophysics and fluorescence quenching studies. Dyes Pigm. 2012;95:280–9.
There are 41 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Sinem Temizel This is me 0000-0002-1639-1056

Altuğ Mert Sevim 0000-0001-5845-2884

Publication Date February 15, 2020
Submission Date October 16, 2019
Acceptance Date November 12, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

Vancouver Temizel S, Sevim AM. Synthesis and photophysical properties of A3B-type non-symmetrically substituted anthracene-based zinc(II) phthalocyanine. JOTCSA. 2020;7(1):107-16.