Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 1, 277 - 286, 15.02.2020
https://doi.org/10.18596/jotcsa.638912

Abstract

References

  • 1. Wang C, Fang Y, Peng S, Ma D, Zhao J. Synthesis of novel chelating agents and their effect on cadmium decorporation. Chemical Research in Toxicology. 1999;12(4):331-4.
  • 2. Williams C, David D. The effect of superphosphate on the cadmium content of soils and plants. Soil Research. 1973;11(1):43-56.
  • 3. Salviano Mendes AM, Duda GP, Araujo do Nascimento CW, Silva MO. Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers. Scientia Agricola. 2006;63(4):328-32.
  • 4. Prozialeck WC, Edwards JR, Woods JM. The vascular endothelium as a target of cadmium toxicity. Life Sciences. 2006;79(16):1493-506.
  • 5. Varriale A, Staiano M, Rossi M, D'Auria S. High-affinity binding of cadmium ions by mouse metallothionein prompting the design of a reversed-displacement protein-based fluorescence biosensor for cadmium detection. Analytical Chemistry. 2007;79(15):5760-2.
  • 6. Can IAfRo. IARC monographs on the evaluation of the carcinogenic risks to humans: beryllium, cadmium, mercury, and exposures in the glass manufacturing industry: World Health Organization; 1993.
  • 7. McFarland C, Bendell-Young L, Guglielmo C, Williams T. Kidney, liver and bone cadmium content in the Western Sandpiper in relation to migration. Journal of Environmental Monitoring. 2002;4(5):791-5.
  • 8. Goyer RA, Liu J, Waalkes MP. Cadmium and cancer of prostate and testis. Biometals. 2004;17(5):555-8.
  • 9. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters. 2003;137(1-2):65-83.
  • 10. Ye Q-y, Li Y, Jiang Y, Yan X-p. Determination of trace cadmium in rice by flow injection on-line filterless precipitation− dissolution preconcentration coupled with flame atomic absorption spectrometry. Journal of Agricultural Food Chemistry. 2003;51(8):2111-4.
  • 11. Pyle SM, Nocerino JM, Deming SN, Palasota JA, Palasota JM, Miller EL, et al. Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil. Environmental Science Technology. 1995;30(1):204-13.
  • 12. Dolan SP, Nortrup DA, Bolger PM, Capar SG. Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry. Journal of Agricultural Food Chemistry. 2003;51(5):1307-12.
  • 13. Bakker E, Pretsch E. Potentiometric sensors for trace-level analysis. Trends in Analytical Chemistry. 2005;24(3):199-207.
  • 14. Prabhakaran D, Yuehong M, Nanjo H, Matsunaga H. Naked-eye cadmium sensor: using chromoionophore arrays of Langmuir−Blodgett molecular assemblies. Analytical Chemistry. 2007;79(11):4056-65.
  • 15. Zhu Y-F, Wang Y-S, Zhou B, Yu J-H, Peng L-L, Huang Y-Q, et al. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Analytical Bioanalytical Chemistry. 2017;409(21):4951-8.
  • 16. Choi M, Kim M, Lee KD, Han K-N, Yoon I-A, Chung H-J, et al. A new reverse PET chemosensor and its chelatoselective aromatic cadmiation. Organic Letters. 2001;3(22):3455-7.
  • 17. Zhang Y, Zhang Z, Yin D, Li J, Xie R, Yang W. Turn-on fluorescent InP nanoprobe for detection of cadmium ions with high selectivity and sensitivity. ACS Applied Materials Interfaces. 2013;5(19):9709-13.
  • 18. Shim S, Tae J. Rhodamine Cyclen-based fluorescent chemosensor for the detection of Cd2+. Bulletin of the Korean Chemical Society. 2011;32:2928-32.
  • 19. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 2012;41(8):3210-44.
  • 20. Nolan EM, Ryu JW, Jaworski J, Feazell RP, Sheng M, Lippard SJ. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. Journal of the American Chemical Society. 2006;128(48):15517-28.
  • 21. Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T. Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. Journal of the American Chemical Society. 2005;127(29):10197-204.
  • 22. Gunnlaugsson T, Lee TC, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron. 2004;60(49):11239-49.
  • 23. Xue L, Li G, Liu Q, Wang H, Liu C, Ding X, et al. Ratiometric fluorescent sensor based on inhibition of resonance for detection of cadmium in aqueous solution and living cells. Inorganic Chemistry. 2011;50(8):3680-90.
  • 24. Xue L, Liu C, Jiang H. Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Organic Letters. 2009;11(7):1655-8.
  • 25. Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews. 2011;112(3):1910-56.
  • 26. Dujols V, Ford F, Czarnik AW. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. Journal of the American Chemical Society. 1997;119(31):7386-7.
  • 27. Shiraishi Y, Sumiya S, Kohno Y, Hirai T. A rhodamine− cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). The Journal of Organic Chemistry. 2008;73(21):8571-4.
  • 28. Bhalla V, Sharma N, Kumar N, Kumar M. Rhodamine based fluorescence turn-on chemosensor for nanomolar detection of Fe3+ ions. Sensors Actuators B: Chemical. 2013;178:228-32.
  • 29. Weerasinghe AJ, Schmiesing C, Sinn E. Highly sensitive and selective reversible sensor for the detection of Cr3+. Tetrahedron Letters. 2009;50(46):6407-10.
  • 30. Jiao Y, Zhou L, He H, Yin J, Gao Q, Wei J, et al. A novel rhodamine B-based “off-on’’fluorescent sensor for selective recognition of copper(II) ions. Talanta. 2018;184:143-8.
  • 31. Adak AK, Purkait R, Manna SK, Ghosh BC, Pathak S, Sinha C. Fluorescence sensing and intracellular imaging of Pd2+ ions by a novel coumarinyl-rhodamine Schiff base. New Journal of Chemistry. 2019;43(9):3899-906.
  • 32. Goswami S, Aich K, Das S, Das AK, Manna A, Halder S. A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd2+ in aqueous media. Analyst. 2013;138(6):1903-7.
  • 33. Aich K, Goswami S, Das S, Mukhopadhyay CD, Quah CK, Fun H-K. Cd2+ triggered the FRET “ON”: a new molecular switch for the ratiometric detection of Cd2+ with live-cell imaging and bound X-ray structure. Inorganic Chemistry. 2015;54(15):7309-15.
  • 34. Maniyazagan M, Mariadasse R, Jeyakanthan J, Lokanath N, Naveen S, Premkumar K, et al. Rhodamine based “turn–on” molecular switch FRET–sensor for cadmium and sulfide ions and live cell imaging study. Sensors Actuators B: Chemical. 2017;238:565-77.
  • 35. Sakthivel P, Sekar K, Sivaraman G, Singaravadivel S. Rhodamine diaminomaleonitrile conjugate as a novel colorimetric fluorescent sensor for recognition of Cd2+ ion. Journal of Fluorescence. 2017;27(3):1109-15.
  • 36. Soibinet M, Souchon V, Leray I, Valeur BJ. Rhod-5N as a fluorescent molecular sensor of cadmium(II) ion. Journal of Fluorescence. 2008;18(6):1077.
  • 37. Aydin Z, Wei Y, Guo M. An “off–on” optical sensor for mercury ion detection in aqueous solution and living cells. Inorganic Chemistry Communications. 2014;50:84-7.
  • 38. Taylor D, Demas J. Light intensity measurements I: Large area bolometers with microwatt sensitivities and absolute calibration of the Rhodamine B quantum counter. Analytical Chemistry. 1979;51(6):712-7.
  • 39. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society Reviews. 2008;37(8):1465-72.
  • 40. Wei Y, Aydin Z, Zhang Y, Liu Z, Guo M. A turn‐on fluorescent sensor for imaging labile fe3+ in live neuronal cells at subcellular resolution. ChemBioChem. 2012;13(11):1569-73.
  • 41. Aydin Z, Wei Y, Guo M. A highly selective rhodamine based turn-on optical sensor for Fe3+. Inorganic Chemistry Communications. 2012;20:93-6.
  • 42. Guo M, Perez C, Wei Y, Rapoza E, Su G, Bou-Abdallah F, et al. Iron-binding properties of plant phenolics and cranberry's bio-effects. Dalton Transactions. 2007(43):4951-61.

A Turn-on Fluorescent Sensor For Cadmium Ion Detection In Aqueous Solutions

Year 2020, Volume: 7 Issue: 1, 277 - 286, 15.02.2020
https://doi.org/10.18596/jotcsa.638912

Abstract

Fluorescent sensors have attracted an important
interest due to their advantages such as high selectivity, rapid response, easy
to use etc.  In this study, a rhodamine based
fluorescent sensor, RhDP, was synthesized, and used for selective detection of Cd2+
ions. The sensor responds to Cd2+ via the coordination induced
fluorescence activation (CIFA) mechanism. RhDP gives a very fast and reversible
fluorescence response to Cd2+ in the presence of the metal ions tested.
The complex stoichiometry between RhDP and Cd2+ was found to
be 1:1 and the binding constant was calculated as
2.70 × 107 M-1in ACN/HEPES buffer (10 mM,
pH: 7.05, v/v 1:1).
The fluorescent detection limit of RhDP for Cd2+
was found to be 0.218 
µM, which gave a marked sensitivity towards Cd2+.

References

  • 1. Wang C, Fang Y, Peng S, Ma D, Zhao J. Synthesis of novel chelating agents and their effect on cadmium decorporation. Chemical Research in Toxicology. 1999;12(4):331-4.
  • 2. Williams C, David D. The effect of superphosphate on the cadmium content of soils and plants. Soil Research. 1973;11(1):43-56.
  • 3. Salviano Mendes AM, Duda GP, Araujo do Nascimento CW, Silva MO. Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers. Scientia Agricola. 2006;63(4):328-32.
  • 4. Prozialeck WC, Edwards JR, Woods JM. The vascular endothelium as a target of cadmium toxicity. Life Sciences. 2006;79(16):1493-506.
  • 5. Varriale A, Staiano M, Rossi M, D'Auria S. High-affinity binding of cadmium ions by mouse metallothionein prompting the design of a reversed-displacement protein-based fluorescence biosensor for cadmium detection. Analytical Chemistry. 2007;79(15):5760-2.
  • 6. Can IAfRo. IARC monographs on the evaluation of the carcinogenic risks to humans: beryllium, cadmium, mercury, and exposures in the glass manufacturing industry: World Health Organization; 1993.
  • 7. McFarland C, Bendell-Young L, Guglielmo C, Williams T. Kidney, liver and bone cadmium content in the Western Sandpiper in relation to migration. Journal of Environmental Monitoring. 2002;4(5):791-5.
  • 8. Goyer RA, Liu J, Waalkes MP. Cadmium and cancer of prostate and testis. Biometals. 2004;17(5):555-8.
  • 9. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters. 2003;137(1-2):65-83.
  • 10. Ye Q-y, Li Y, Jiang Y, Yan X-p. Determination of trace cadmium in rice by flow injection on-line filterless precipitation− dissolution preconcentration coupled with flame atomic absorption spectrometry. Journal of Agricultural Food Chemistry. 2003;51(8):2111-4.
  • 11. Pyle SM, Nocerino JM, Deming SN, Palasota JA, Palasota JM, Miller EL, et al. Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil. Environmental Science Technology. 1995;30(1):204-13.
  • 12. Dolan SP, Nortrup DA, Bolger PM, Capar SG. Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry. Journal of Agricultural Food Chemistry. 2003;51(5):1307-12.
  • 13. Bakker E, Pretsch E. Potentiometric sensors for trace-level analysis. Trends in Analytical Chemistry. 2005;24(3):199-207.
  • 14. Prabhakaran D, Yuehong M, Nanjo H, Matsunaga H. Naked-eye cadmium sensor: using chromoionophore arrays of Langmuir−Blodgett molecular assemblies. Analytical Chemistry. 2007;79(11):4056-65.
  • 15. Zhu Y-F, Wang Y-S, Zhou B, Yu J-H, Peng L-L, Huang Y-Q, et al. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Analytical Bioanalytical Chemistry. 2017;409(21):4951-8.
  • 16. Choi M, Kim M, Lee KD, Han K-N, Yoon I-A, Chung H-J, et al. A new reverse PET chemosensor and its chelatoselective aromatic cadmiation. Organic Letters. 2001;3(22):3455-7.
  • 17. Zhang Y, Zhang Z, Yin D, Li J, Xie R, Yang W. Turn-on fluorescent InP nanoprobe for detection of cadmium ions with high selectivity and sensitivity. ACS Applied Materials Interfaces. 2013;5(19):9709-13.
  • 18. Shim S, Tae J. Rhodamine Cyclen-based fluorescent chemosensor for the detection of Cd2+. Bulletin of the Korean Chemical Society. 2011;32:2928-32.
  • 19. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 2012;41(8):3210-44.
  • 20. Nolan EM, Ryu JW, Jaworski J, Feazell RP, Sheng M, Lippard SJ. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. Journal of the American Chemical Society. 2006;128(48):15517-28.
  • 21. Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T. Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. Journal of the American Chemical Society. 2005;127(29):10197-204.
  • 22. Gunnlaugsson T, Lee TC, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron. 2004;60(49):11239-49.
  • 23. Xue L, Li G, Liu Q, Wang H, Liu C, Ding X, et al. Ratiometric fluorescent sensor based on inhibition of resonance for detection of cadmium in aqueous solution and living cells. Inorganic Chemistry. 2011;50(8):3680-90.
  • 24. Xue L, Liu C, Jiang H. Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Organic Letters. 2009;11(7):1655-8.
  • 25. Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews. 2011;112(3):1910-56.
  • 26. Dujols V, Ford F, Czarnik AW. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. Journal of the American Chemical Society. 1997;119(31):7386-7.
  • 27. Shiraishi Y, Sumiya S, Kohno Y, Hirai T. A rhodamine− cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). The Journal of Organic Chemistry. 2008;73(21):8571-4.
  • 28. Bhalla V, Sharma N, Kumar N, Kumar M. Rhodamine based fluorescence turn-on chemosensor for nanomolar detection of Fe3+ ions. Sensors Actuators B: Chemical. 2013;178:228-32.
  • 29. Weerasinghe AJ, Schmiesing C, Sinn E. Highly sensitive and selective reversible sensor for the detection of Cr3+. Tetrahedron Letters. 2009;50(46):6407-10.
  • 30. Jiao Y, Zhou L, He H, Yin J, Gao Q, Wei J, et al. A novel rhodamine B-based “off-on’’fluorescent sensor for selective recognition of copper(II) ions. Talanta. 2018;184:143-8.
  • 31. Adak AK, Purkait R, Manna SK, Ghosh BC, Pathak S, Sinha C. Fluorescence sensing and intracellular imaging of Pd2+ ions by a novel coumarinyl-rhodamine Schiff base. New Journal of Chemistry. 2019;43(9):3899-906.
  • 32. Goswami S, Aich K, Das S, Das AK, Manna A, Halder S. A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd2+ in aqueous media. Analyst. 2013;138(6):1903-7.
  • 33. Aich K, Goswami S, Das S, Mukhopadhyay CD, Quah CK, Fun H-K. Cd2+ triggered the FRET “ON”: a new molecular switch for the ratiometric detection of Cd2+ with live-cell imaging and bound X-ray structure. Inorganic Chemistry. 2015;54(15):7309-15.
  • 34. Maniyazagan M, Mariadasse R, Jeyakanthan J, Lokanath N, Naveen S, Premkumar K, et al. Rhodamine based “turn–on” molecular switch FRET–sensor for cadmium and sulfide ions and live cell imaging study. Sensors Actuators B: Chemical. 2017;238:565-77.
  • 35. Sakthivel P, Sekar K, Sivaraman G, Singaravadivel S. Rhodamine diaminomaleonitrile conjugate as a novel colorimetric fluorescent sensor for recognition of Cd2+ ion. Journal of Fluorescence. 2017;27(3):1109-15.
  • 36. Soibinet M, Souchon V, Leray I, Valeur BJ. Rhod-5N as a fluorescent molecular sensor of cadmium(II) ion. Journal of Fluorescence. 2008;18(6):1077.
  • 37. Aydin Z, Wei Y, Guo M. An “off–on” optical sensor for mercury ion detection in aqueous solution and living cells. Inorganic Chemistry Communications. 2014;50:84-7.
  • 38. Taylor D, Demas J. Light intensity measurements I: Large area bolometers with microwatt sensitivities and absolute calibration of the Rhodamine B quantum counter. Analytical Chemistry. 1979;51(6):712-7.
  • 39. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society Reviews. 2008;37(8):1465-72.
  • 40. Wei Y, Aydin Z, Zhang Y, Liu Z, Guo M. A turn‐on fluorescent sensor for imaging labile fe3+ in live neuronal cells at subcellular resolution. ChemBioChem. 2012;13(11):1569-73.
  • 41. Aydin Z, Wei Y, Guo M. A highly selective rhodamine based turn-on optical sensor for Fe3+. Inorganic Chemistry Communications. 2012;20:93-6.
  • 42. Guo M, Perez C, Wei Y, Rapoza E, Su G, Bou-Abdallah F, et al. Iron-binding properties of plant phenolics and cranberry's bio-effects. Dalton Transactions. 2007(43):4951-61.
There are 42 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Ziya Aydın 0000-0001-8074-9510

Publication Date February 15, 2020
Submission Date October 28, 2019
Acceptance Date December 28, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

Vancouver Aydın Z. A Turn-on Fluorescent Sensor For Cadmium Ion Detection In Aqueous Solutions. JOTCSA. 2020;7(1):277-86.