Yıl 2021, Cilt 8 , Sayı 1, Sayfalar 173 - 186 2021-02-28

Poly(glutamic acid) Modified Pencil Graphite Electrode for Voltammetric Determination of Bisphenol A

Ozge GORDUK [1]

Bisphenol A (BPA), which is an endocrine-disrupting substance, is often utilized as beverage and food packing material, and it may accumulate in nutrition and water sources, which is why it is important to monitor. In this study, for the determination of bisphenol A, electro-polymerization of glutamic acid (GA) was performed on a pencil graphite electrode (PGE). The performance of the sensor (PGA/PGE) for determining bisphenol A was examined utilizing the cyclic voltammetric (CV) and differential pulse voltammetric (DPV) methods. Electrochemical characterization process of the PGA/PGE was carried out by the electrochemical impedance spectroscopy (EIS) and CV methods. The morphological property of the PGA/PGE was investigated by scanning electron microscopy (SEM). The presence of functional groups in the PGA/PGE composition was characterized by Fourier transform infrared spectroscopy (FTIR). The electrochemical behavior of BPA was observed with the bare PGE and the PGA/PGE. Based on the findings, the response of BPA was considerably raised with PGA/PGE. With the optimized parameters and based on the findings from DPV, the BPA oxidation current was linear in a concentration interval of 1.0 to 100 μM (R=0.9992), and the detection limit was found to be 0.37 μM. Detection of BPA in the plastic bottled drinking water sample using PGA/PGE was performed successfully, and the recoveries were in the range of 89.3 to 104.7%. This strategy can provide several prospects in electrochemically determining BPA in practical applications.
Glutamic acid, Electro-polymerization, Bisphenol A, Pencil Graphite Electrode, Voltammetric determination
  • 1. Alam AU, Deen MJ. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Anal Chem. 2020; 92(7):5532-5539.
  • 2. Ashraf G, Asif M, Aziz A, Wang Z, Qiu X, Huang Q, et al. Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Microchimica Acta. 2019;186(6):337.
  • 3. Gugoasa LA, Stefan-van Staden RI, van Staden JF, Coros M, Pruneanu S, editors. Voltammetric determination of bisphenol A with a silver-reduced graphene oxide composite paste microsensor. 2019 International Semiconductor Conference (CAS); 2019: IEEE.
  • 4. Bolat G, Yaman YT, Abaci S. Highly sensitive electrochemical assay for Bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil graphite electrodes. Sens Actuators, B. 2018;255:140-8.
  • 5. Ezoji H, Rahimnejad M, Najafpour-Darzi G. Advanced sensing platform for electrochemical monitoring of the environmental toxin; bisphenol A. Ecotoxicology and Environmental Safety. 2020;190:110088.
  • 6. Hu L, Fong C-C, Zhang X, Chan LL, Lam PK, Chu PK, et al. Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environmental science & technology. 2016;50(8):4430-8.
  • 7. Bakirhan NK, Ozkan SA. The Recent Electrochemical Studies on Bisphenol A Detection in Beverages. Safety Issues in Beverage Production: Elsevier; 2020. p. 309-33.
  • 8. Yaman YT, Abaci S. Sensitive adsorptive voltammetric method for determination of bisphenol A by gold nanoparticle/polyvinylpyrrolidone-modified pencil graphite electrode. Sensors. 2016;16(6):756.
  • 9. Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, et al. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Analytical and bioanalytical chemistry. 2009;395(4):1125-33.
  • 10. Koyun O, Gorduk S, Gencten M, Sahin Y. A novel copper (II) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New J Chem. 2019;43(1):85-92.
  • 11. Malone E, Elliott C, Kennedy D, Regan L. Rapid confirmatory method for the determination of sixteen synthetic growth promoters and bisphenol A in bovine milk using dispersive solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2010;878(15-16):1077-84.
  • 12. De Meulenaer B, Baert K, Lanckriet H, Van Hoed V, Huyghebaert A. Development of an enzyme-linked immunosorbent assay for bisphenol A using chicken immunoglobulins. J Agric Food Chem. 2002;50(19):5273-82.
  • 13. Zhao W, Sheng N, Zhu R, Wei F, Cai Z, Zhai M, et al. Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples. J Hazard Mater. 2010;179(1-3):223-9.
  • 14. Kim Y, Jeon JB, Chang JY. CdSe quantum dot-encapsulated molecularly imprinted mesoporous silica particles for fluorescent sensing of bisphenol A. J Mater Chem. 2012;22(45):24075-80.
  • 15. Gugoasa LA, Stefan-van Staden R-I, van Staden JF, Coroș M, Pruneanu S. Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode. Anal Lett. 2019;52(16):2583-606.
  • 16. Özcan L, Altuntas M, Buyuksagis A, Türk H, Yurdakal S. Electrochemical determination of bisphenol A with pencil graphite electrodes modified with Co (II), Ni (II), Cu (II) and Fe (II) phthalocyaninetetrasulfonates. Anal Sci. 2016;32(8):881-6.
  • 17. Messaoud NB, Lahcen AA, Dridi C, Amine A. Ultrasound assisted magnetic imprinted polymer combined sensor based on carbon black and gold nanoparticles for selective and sensitive electrochemical detection of bisphenol A. Sens Actuators, B. 2018;276:304-12.
  • 18. Tahtaisleyen S, Gorduk O, Sahin Y. Electrochemical Determination of Tartrazine Using a Graphene/Poly (L-Phenylalanine) Modified Pencil Graphite Electrode. Anal Lett. 2020:1-21.
  • 19. Dokur E, Gorduk O, Sahin Y. Differential Pulse Voltammetric Determination of Folic Acid Using a Poly (Cystine) Modified Pencil Graphite Electrode. Anal Lett. 2020:1-19.
  • 20. Koyun O, Gorduk S, Arvas M, Sahin Y. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russ J Electrochem. 2018;54(11):796-808.
  • 21. Koyun O, Gursu H, Gorduk S, Sahin Y. Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode. Int J Electrochem Sci. 2017;12:6428-44.
  • 22. Koyun O, Gorduk S, Arvas MB, Sahin Y. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synth Met. 2017;233:111-8.
  • 23. Gorduk O. Differential Pulse Voltammetric Determination of Serotonin Using an Acid-Activated Multiwalled Carbon Nanotube–Over-Oxidized Poly (3, 4-ethylenedioxythiophene) Modified Pencil Graphite Electrode. Anal Lett. 2019:1-19.
  • 24. Santos DP, Zanoni MVB, Bergamini MF, Chiorcea-Paquim A-M, Diculescu VC, Brett A-MO. Poly (glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance. Electrochim Acta. 2008;53(11):3991-4000.
  • 25. Santos DP, Bergamini MF, Santos VA, Furlan M, Zanoni MVB. Preconcentration of rutin at a poly glutamic acid modified electrode and its determination by square wave voltammetry. Anal Lett. 2007;40(18):3430-42.
  • 26. Liu X, Luo L, Ding Y, Ye D. Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan. Bioelectrochemistry. 2011;82(1):38-45.
  • 27. Wang L, Huang P, Bai J, Wang H, Zhang L, Zhao Y. Direct simultaneous electrochemical determination of hydroquinone and catechol at a poly (glutamic acid) modified glassy carbon electrode. International Journal of Electrochemical Science. 2007;2(1):123-32.
  • 28. Ganesh P, Swamy BK. Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly (glutamic acid) modified carbon paste electrode. J Electroanal Chem. 2015;752:17-24.
  • 29. Yu A-M, Chen H-Y. Electrocatalytic oxidation and determination of ascorbic acid at poly (glutamic acid) chemically modified electrode. Anal Chim Acta. 1997;344(3):181-5.
  • 30. Santos DP, Bergamini MF, Fogg AG, Zanoni MVB. Application of a glassy carbon electrode modified with poly (glutamic acid) in caffeic acid determination. Microchimica Acta. 2005;151(1-2):127-34.
  • 31. Zhou X, Zheng X, Lv R, Kong D, Li Q. Electrodeposition of platinum on poly (glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection. Electrochim Acta. 2013;107:164-9.
  • 32. Feminus JJ, Manikandan R, Narayanan SS, Deepa P. Determination of gallic acid using poly (glutamic acid): graphene modified electrode. J Chem Sci. 2019;131(2):11.
  • 33. Özcan A, İlkbaş S. Preparation of poly (3, 4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Anal Chim Acta. 2015;891:312-20.
  • 34. Özcan L, Şahin Y. Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens Actuators, B. 2007;127(2):362-9.
  • 35. Koyun O, Sahin Y. Poly (L-Cysteine) modified pencil graphite electrode for determination of sunset yellow in food and beverage samples by differential pulse voltammetry. Int J Electrochem Sci. 2018;13:159-74.
  • 36. Koyun O, Sahin Y. Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics. 2018;24(10):3187-97.
  • 37. Li Y, Hsu P-C, Chen S-M, Lou B-S, Ali MA, Al-Hemaid F. Simultaneously Determination of Procaine and Catechol at Functionalized Multi-Walled Carbon Nanotube with Poly-Glutamic Acid Modified Electrode. Journal of Biobased Materials and Bioenergy. 2014;8(2):149-57.
  • 38. Lin B, Li Z, Zhang H, Wu J, Luo M. Cloning and Expression of the 𝛾-Polyglutamic Acid Synthetase Gene pgsBCA in Bacillus subtilis WB600. BioMed Research International. 20166; Article ID 3073949, 7 pages.
  • 39. Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta. 2016;148:362-9.
  • 40. Bard AJ, Faulkner LR, Leddy J, Zoski CG. Electrochemical methods: fundamentals and applications: wiley New York; 1980.
  • 41. Ulubay Karabiberoğlu Ş. Sensitive Voltammetric Determination of Bisphenol A Based on a Glassy Carbon Electrode Modified with Copper Oxide‐Zinc Oxide Decorated on Graphene Oxide. Electroanalysis. 2019;31(1):91-102.
  • 42. Tian Y, Deng P, Wu Y, Li J, Liu J, Li G, et al. MnO2 Nanowires-Decorated Reduced Graphene Oxide Modified Glassy Carbon Electrode for Sensitive Determination of Bisphenol A. J Electrochem Soc. 2020;167(4):046514.
  • 43. Hu P, Zhu X, Luo X, Hu X, Ji L. Cathodic electrodeposited Cu-BTC MOFs assembled from Cu (II) and trimesic acid for electrochemical determination of bisphenol A. Microchimica Acta. 2020;187(2):145.
  • 44. Dempsey E, Diamond D, Collier A. Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosensors and Bioelectronics. 2004;20:367–377.
  • 45. Wang W, Tang J, Zheng S, Ma X, Zhu J, Li F, Wang J. Electrochemical Determination of Bisphenol A at Multi-walled Carbon Nanotubes/Poly (Crystal Violet) Modified Glassy Carbon Electrode. Food Anal. Methods. 2017;10:3815–3824.
  • 46. Mazzotta E, Malitesta C, Margapoti E. Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes. Anal Bioanal Chem. 2013;405:3587–3592.
  • 47. Chen Z, Tang C, Zeng Y, Liu H, Yin Z, Li L. Determination of Bisphenol A Using an Electrochemical Sensor Based on a Molecularly Imprinted Polymer-Modified Multiwalled Carbon Nanotube Paste Electrode. Analytical Letters. 2014;47:996–1014.
  • 48. Filik H, Avan AA. Electrochemical Determination of Bisphenol A Based on Poly(Chromotropic Acid) Modified Glassy Carbon Electrode. Current Analytical Chemistry. 2017;13(6):464-473.
  • 49. Lin Y, Liu K, Liu C, Yin L, Kang Q, Li L, Li B. Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochimica Acta. 2014;133:492-500.
  • 50. Zhuang Y, Zhou M, Gu J, Li X. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;122:153-157.
Birincil Dil en
Konular Kimya, Analitik
Bölüm Makaleler

Orcid: 0000-0003-1370-7534
Yazar: Ozge GORDUK (Sorumlu Yazar)
Kurum: Yildiz Technical University
Ülke: Turkey

Teşekkür O. Gorduk especially thanks Prof. Dr. Yucel Sahin for his valuable contributions to this study.

Başvuru Tarihi : 28 Nisan 2020
Kabul Tarihi : 2 Aralık 2020
Yayımlanma Tarihi : 28 Şubat 2021

Vancouver Gorduk O . Poly(glutamic acid) Modified Pencil Graphite Electrode for Voltammetric Determination of Bisphenol A. Journal of the Turkish Chemical Society Section A: Chemistry. 2021; 8(1): 173-186.