Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 1, 239 - 248, 28.02.2021
https://doi.org/10.18596/jotcsa.823874

Öz

Kaynakça

  • 1. Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids [Internet]. 2020;153(October 2019):108529. Available from: https://doi.org/10.1016/j.steroids.2019.108529
  • 2. Alzheimer Europe. Dementia in Europe Yearbook. Estimating the prevalence of dementia in Europe. 2019.
  • 3. Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev Res. 2020;81(2):165–83.
  • 4. Sivaraman D, Panneerselvam P, Muralidharan P. Memory and brain neurotransmitter restoring potential of hydroalcoholic extract of ipomoea aquatica forsk on amyloid beta Aβ (25-35) induced cognitive deficits in alzheimer’s mice. Int J Pharmacol. 2016;12(2):52–65.
  • 5. Sivaraman D, Srikanth J. Discovery of novel monoamine oxidase-b inhibitors by molecular docking approach for alzheimer’s and parkinson’s disease treatment. Int J Pharm Sci Rev Res. 2016;40(1):245–50.
  • 6. Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2018;14(3):367–429.
  • 7. Bae HJ, Sowndhararajan K, Park HB, Kim SY, Kim S, Kim DH, et al. Danshensu attenuates scopolamine and amyloid-β-induced cognitive impairments through the activation of PKA-CREB signaling in mice. Neurochem Int [Internet]. 2019;131(August):104537. Available from: https://doi.org/10.1016/j.neuint.2019.104537
  • 8. Bashir MA, Khan A ullah, Badshah H, Rodrigues-Filho E, Din ZU, Khan A. Synthesis, characterization, molecular docking evaluation, antidepressant, and anti-Alzheimer effects of dibenzylidene ketone derivatives. Drug Dev Res. 2019;80(5):595–605.
  • 9. Hussien HM, Abd-Elmegied A, Ghareeb DA, Hafez HS, Ahmed HEA, El-moneam NA. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem Toxicol [Internet]. 2018;111(April 2017):432–44. Available from: https://doi.org/10.1016/j.fct.2017.11.025
  • 10. Ji HF, Zhang HY. Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacol Sin. 2008;29(2):143–51.
  • 11. Riederer P, Danielczyk W, Grünblatt E. Monoamine Oxidase-B Inhibition in Alzheimer’s Disease. Neurotoxicology. 2004;25(1–2):271–7.
  • 12. Wang Y, Wang H, Chen H. AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer’s Disease. Curr Neuropharmacol. 2016;14(4):364–75.
  • 13. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci U S A. 1991;88(17):7552–6.
  • 14. Tcw J, Goate AM. Genetics of β-Amyloid Precursor Protein in Alzheimer’s Disease. Cold Spring Harb Perspect Med. 2017;7(6):1–12.
  • 15. Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ, et al. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015;16(9):564–74.
  • 16. Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuro-Psychopharmacology Biol Psychiatry. 2016;69:112–24.
  • 17. Iqbal K, Liu F, Gong C-X, Tau in Alzheimer Disease and Related Tautopathies. Curr Alzheimer Res. 2010;8(7):656–64.
  • 18. Hutton M, Hardy J. The presenilins and Alzheimer’s disease. Hum Mol Genet. 1997;6(10 REV. ISS.):1639–46.
  • 19. Mun MJ, Kim JH, Choi JY, Jang WC. Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: An update meta-analysis. Meta Gene [Internet]. 2016;8:1–10. Available from: http://dx.doi.org/10.1016/j.mgene.2016.01.001
  • 20. Ezquerra M, Blesa R, Tolosa E, Ballesta F, Oliva R. α-Antichymotrypsin gene polymorphism and risk for Alzheimer’s disease in the Spanish population. Neurosci Lett. 1998;240(2):107–9.
  • 21. Sumirtanurdin R, Thalib AY, Cantona K, Abdulah R. Effect of genetic polymorphisms on alzheimer’s disease treatment outcomes: An update. Clin Interv Aging. 2019;14:631–42.
  • 22. Xu X, Wang Y, Wang L, Liao Q, Chang L, Xu L, et al. Meta-Analyses of 8 Polymorphisms Associated with the Risk of the Alzheimer’s Disease. PLoS One. 2013;8(9).
  • 23. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol Aging. 2006;27(2):190–8.
  • 24. Steardo L, Steardo L, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol. 2020;229(3):10–3.
  • 25. Hall RE, Klenow PJ, Jones CI. Trading Off Consumption and COVID-19 Deaths. Fed Reserv BANK Minneap Q Rev. 2020;42(1).
  • 26. Bulut C, Kato Y. Epidemiology of covid-19. Turkish J Med Sci. 2020;50(SI-1):563–70.
  • 27. Brown EE, Kumar S, Rajji TK, Pollock BG, Mulsant BH. Anticipating and Mitigating the Impact of the COVID-19 Pandemic on Alzheimer’s Disease and Related Dementias. Am J Geriatr Psychiatry [Internet]. 2020;28(7):712–21. Available from: https://doi.org/10.1016/j.jagp.2020.04.010
  • 28. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J Neurol Neurosurg Psychiatry. 1999;66(2):137–47.
  • 29. Greig NH, Lahiri DK, Sambamurti K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int Psychogeriatrics. 2002;14(SUPPL. 1):77–91.
  • 30. García-Ayllón MS, Small DH, Avila J, Sáez-Valero J. Revisiting the role of acetylcholinesterase in Alzheimer­s disease: Cross-talk with β-tau and p-amyloid. Front Mol Neurosci. 2011;4(SEP):1–9.
  • 31. Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep. 2019;20(2):1479–87.
  • 32. Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease (review). Biomed Reports. 2016;4(5):519–22.
  • 33. Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J Alzheimer’s Dis. 2017;57(4):1105–21.
  • 34. Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta - Mol Basis Dis. 2012;1822(5):625–30.
  • 35. Kachalova G, Decker K, Holt A, Bartunik HD. Crystallographic snapshots of the complete reaction cycle of nicotine degradation by an amine oxidase of the monoamine oxidase (MAO) family. Proc Natl Acad Sci U S A. 2011;108(12):4800–5.
  • 36. Fiedorowicz JG, Swartz KL. The role of monoamine oxidase inhibitors in current psychiatric practice. J Psychiatr Pract. 2004;10(4):239–48.
  • 37. Rendu F, Peoc’h K, Berlin I, Thomas D, Launay JM. Smoking related diseases: The central role of monoamine oxidase. Int J Environ Res Public Health. 2011;8(1):136–47.
  • 38. Sadaoui N, Bec N, Barragan-Montero V, Kadri N, Cuisinier F, Larroque C, et al. The essential oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and its effect on the cholinesterase and monoamine oxidase activities. Fitoterapia [Internet]. 2018;130(June):1–5. Available from: https://doi.org/10.1016/j.fitote.2018.07.015
  • 39. Duncan J, Johnson S, Ou XM. Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov Ther. 2012;6(3):112–22.
  • 40. Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60(13–14):1527–33.
  • 41. Lee HW, Ryu HW, Kang MG, Park D, Lee H, Shin HM, et al. Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int J Biol Macromol [Internet]. 2017;97:598–605. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.01.080
  • 42. Maggiorani D, Manzella N, Edmondson DE, Mattevi A, Parini A, Binda C, et al. Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing. Oxid Med Cell Longev. 2017;2017(3).
  • 43. Leng J, Qin HL, Zhu K, Jantan I, Hussain MA, Sher M, et al. Evaluation of multifunctional synthetic tetralone derivatives for treatment of Alzheimer’s disease. Chem Biol Drug Des. 2016;88(6):889–98.
  • 44. Gaweska H, Fitzpatrick PF. Structures and mechanism of the monoamine oxidase family. Biomol Concepts. 2011;2(5):365–77.
  • 45. Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimer’s Res Ther. 2017;9(1):1–19.
  • 46. Xie SS, Wang X, Jiang N, Yu W, Wang KDG, Lan JS, et al. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur J Med Chem [Internet]. 2015;95:153–65. Available from: http://dx.doi.org/10.1016/j.ejmech.2015.03.040
  • 47. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2006;26(35):9047–56.
  • 48. Ege T. The Pharmacological and Therapeutic Potentials of Epilobium hirsutum L. Int J Pharm Sci Rev Res. 2019;57(2):20–3.
  • 49. Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: From chemistry to biology. Molecules. 2009;14(6):2202–11.
  • 50. Chimenti F, Cottiglia F, Bonsignore L, Casu L, Casu M, Floris C, et al. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: Extraction, biological analysis, and computational study. J Nat Prod. 2006;69(6):945–9.
  • 51. Lee MH, Lin RD, Shen LY, Yang LL, Yen KY, Hou WC. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J Agric Food Chem. 2001;49(11):5551–5.
  • 52. Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des. 2006;67(1):27–37.
  • 53. Mazzio EA, Harris N, Soliman KFA. Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med. 1998;64(7):603–6.
  • 54. Zhou CX, Kong LD, Ye WC, Cheng CHK, Tan RX. Veratrum taliense. 2001;67:158–61.
  • 55. Khatri D, Juvekar A. Kinetics of inhibition of monoamine oxidase using curcumin and ellagic acid. Pharmacogn Mag. 2016;12(46):116.
  • 56. Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016;2(3).
  • 57. Lee HW, Kim YJ, Nam SJ, Kim H. Potent selective inhibition of monoamine oxidase a by alternariol monomethyl ether isolated from alternaria brassicae. J Microbiol Biotechnol. 2017;27(2):316–20.
  • 58. Ji HF, Shen L. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. ScientificWorldJournal. 2012;2012.
  • 59. Varma AK, Patil R, Das S, Stanley A, Yadav L, Sudhakar A. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of Drug-Designing. PLoS One. 2010;5(8).
  • 60. Alok S, Jain SK, Verma A, Kumar M, Mahor A, Sabharwal M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pacific J Trop Dis. 2013;3(3):242–51.
  • 61. Ojo OA, Afon AA, Ojo AB, Ajiboye BO, Okesola MA, Aruleba RT, et al. Spondias mombim L. (Anacardiaceae): Chemical fingerprints, inhibitory activities, and molecular docking on key enzymes relevant to erectile dysfunction and Alzheimer’s diseases. J Food Biochem. 2019;43(3):1–17.
  • 62. Shakir MA. The effect of Aloe Vera extract on Acetylcholinesterase AchE and Monoamine Oxidase MAO enzymes. Al-Mustansiriyah J Sci. 2018;29(4):88–92.
  • 63. PANG XC, KANG D, FANG JS, ZHAO Y, XU LJ, LIAN WW, et al. Network pharmacology-based analysis of Chinese herbal Naodesheng formula for application to Alzheimer’s disease. Chin J Nat Med. 2018;16(1):53–62.
  • 64. Dar A, Khatoon S, Rahman G, Atta-Ur-Rahman. Anti-depressant activities of Areca catechu fruit extract. Phytomedicine. 1997;4(1):41–5.
  • 65. Kannan R, Sivaraman D, Muralidharan P, Deepakvenkataraman N. Neuroprotective effect of hydroalcoholic extract of areca catechu linn on β-amyloid (25-35) induced cognitive dysfunction in mice. Int J Res Ayurveda Pharm. 2013;4(5):747–53.
  • 66. Khan S, Abbas G, Ahmed FS, Atta-Ur-Rahman, Dar A. Effect of dichloromethane fraction of Areca catechu nut on monoamines associated behaviors and tyramine pressor sensitivity in rodents. Pak J Pharm Sci. 2014;27(2):303–7.
  • 67. Akıncıoğlu, H., Akbaş, M. and Aydın T. Determination of Inhibition Effect of Plantago Major Plant Extract on Monoamine Oxidase Isoenzymes (MAO-A and MAO-B). In: 4th INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL & APPLIED SCIENCES. 2019.
  • 68. Rojas C, Rojas-Castañeda J, Rojas P. Antioxidant properties of a Ginkgo biloba leaf extract (EGb 761) in animal models of Alzheimer’s and Parkinson’s diseases. Curr Top Nutraceutical Res. 2016;14(1):1–16.
  • 69. Pardon MC, Joubert C, Perez-Diaz F, Christen Y, Launay JM, Cohen-Salmon C. In vivo regulation of cerebral monoamine oxidase activity in senescent controls and chronically stressed mice by long-term treatment with Ginkgo biloba extrac3t (EGb 761). Mech Ageing Dev. 2000;113(3):157–68.
  • 70. Hwang KH. Monoamine oxidase inhibitory activities of Korean medicinal plants classified to cold drugs by the theory of KIMI. Food Sci Biotechnol. 2003;12:238–41.
  • 71. Park, T. K. and Hwang KH. Inhibitory activity of the fruit extract of Gardenia jasminoides on monoamine oxidase. Korean J Pharmacogn. 2007;38:108–12.
  • 72. Kim JH, Kim GH, Hwang KH. Monoamine oxidase and dopamine β-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomol Ther. 2012;20(2):214–9.
  • 73. Pitchai D, Manikkam R, Rajendran SR, Pitchai G. Database on pharmacophore analysis of active principles, from medicinal plants. Bioinformation. 2010;5(2):43–5.

Monoamine Oxidase Inhibitory Effects of Medicinal Plants in Management of Alzheimer's Disease

Yıl 2021, Cilt: 8 Sayı: 1, 239 - 248, 28.02.2021
https://doi.org/10.18596/jotcsa.823874

Öz

Alzheimer's disease is the most common progressive neurodegenerative disorder that effects large population of society especially elderly people. Environmental and/or genetic factors contribute Alzheimer's disease to become a pivotal health problem but this relationship remains ambiguous. Globally growing prevalence of Alzheimer’s disease requires to understand cellular pathways that lead to Alzheimer’s disease and to develop new strategies for prevention and treatment. Elevated monoamine oxidase (MAO) enzymes activity with ages is associated with etiology of Alzheimer's disease. Inhibition of monoamine oxidase enzyme can protect from neuronal damage, thus it become one of the key pathway for management of Alzheimer’s disease. Using bioactive compounds from medicinal plants as potential monoamine oxidase inhibitors might be a better solution considering undesired side effects of synthetic drugs on human body. The purpose of this review is to implicate the importance of pharmacophore analysis which explains pharmacological properties of medicinal plants and interaction of bioactive compound from plants with MAO enzyme.

Kaynakça

  • 1. Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids [Internet]. 2020;153(October 2019):108529. Available from: https://doi.org/10.1016/j.steroids.2019.108529
  • 2. Alzheimer Europe. Dementia in Europe Yearbook. Estimating the prevalence of dementia in Europe. 2019.
  • 3. Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev Res. 2020;81(2):165–83.
  • 4. Sivaraman D, Panneerselvam P, Muralidharan P. Memory and brain neurotransmitter restoring potential of hydroalcoholic extract of ipomoea aquatica forsk on amyloid beta Aβ (25-35) induced cognitive deficits in alzheimer’s mice. Int J Pharmacol. 2016;12(2):52–65.
  • 5. Sivaraman D, Srikanth J. Discovery of novel monoamine oxidase-b inhibitors by molecular docking approach for alzheimer’s and parkinson’s disease treatment. Int J Pharm Sci Rev Res. 2016;40(1):245–50.
  • 6. Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2018;14(3):367–429.
  • 7. Bae HJ, Sowndhararajan K, Park HB, Kim SY, Kim S, Kim DH, et al. Danshensu attenuates scopolamine and amyloid-β-induced cognitive impairments through the activation of PKA-CREB signaling in mice. Neurochem Int [Internet]. 2019;131(August):104537. Available from: https://doi.org/10.1016/j.neuint.2019.104537
  • 8. Bashir MA, Khan A ullah, Badshah H, Rodrigues-Filho E, Din ZU, Khan A. Synthesis, characterization, molecular docking evaluation, antidepressant, and anti-Alzheimer effects of dibenzylidene ketone derivatives. Drug Dev Res. 2019;80(5):595–605.
  • 9. Hussien HM, Abd-Elmegied A, Ghareeb DA, Hafez HS, Ahmed HEA, El-moneam NA. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem Toxicol [Internet]. 2018;111(April 2017):432–44. Available from: https://doi.org/10.1016/j.fct.2017.11.025
  • 10. Ji HF, Zhang HY. Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacol Sin. 2008;29(2):143–51.
  • 11. Riederer P, Danielczyk W, Grünblatt E. Monoamine Oxidase-B Inhibition in Alzheimer’s Disease. Neurotoxicology. 2004;25(1–2):271–7.
  • 12. Wang Y, Wang H, Chen H. AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer’s Disease. Curr Neuropharmacol. 2016;14(4):364–75.
  • 13. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci U S A. 1991;88(17):7552–6.
  • 14. Tcw J, Goate AM. Genetics of β-Amyloid Precursor Protein in Alzheimer’s Disease. Cold Spring Harb Perspect Med. 2017;7(6):1–12.
  • 15. Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ, et al. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015;16(9):564–74.
  • 16. Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuro-Psychopharmacology Biol Psychiatry. 2016;69:112–24.
  • 17. Iqbal K, Liu F, Gong C-X, Tau in Alzheimer Disease and Related Tautopathies. Curr Alzheimer Res. 2010;8(7):656–64.
  • 18. Hutton M, Hardy J. The presenilins and Alzheimer’s disease. Hum Mol Genet. 1997;6(10 REV. ISS.):1639–46.
  • 19. Mun MJ, Kim JH, Choi JY, Jang WC. Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: An update meta-analysis. Meta Gene [Internet]. 2016;8:1–10. Available from: http://dx.doi.org/10.1016/j.mgene.2016.01.001
  • 20. Ezquerra M, Blesa R, Tolosa E, Ballesta F, Oliva R. α-Antichymotrypsin gene polymorphism and risk for Alzheimer’s disease in the Spanish population. Neurosci Lett. 1998;240(2):107–9.
  • 21. Sumirtanurdin R, Thalib AY, Cantona K, Abdulah R. Effect of genetic polymorphisms on alzheimer’s disease treatment outcomes: An update. Clin Interv Aging. 2019;14:631–42.
  • 22. Xu X, Wang Y, Wang L, Liao Q, Chang L, Xu L, et al. Meta-Analyses of 8 Polymorphisms Associated with the Risk of the Alzheimer’s Disease. PLoS One. 2013;8(9).
  • 23. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol Aging. 2006;27(2):190–8.
  • 24. Steardo L, Steardo L, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol. 2020;229(3):10–3.
  • 25. Hall RE, Klenow PJ, Jones CI. Trading Off Consumption and COVID-19 Deaths. Fed Reserv BANK Minneap Q Rev. 2020;42(1).
  • 26. Bulut C, Kato Y. Epidemiology of covid-19. Turkish J Med Sci. 2020;50(SI-1):563–70.
  • 27. Brown EE, Kumar S, Rajji TK, Pollock BG, Mulsant BH. Anticipating and Mitigating the Impact of the COVID-19 Pandemic on Alzheimer’s Disease and Related Dementias. Am J Geriatr Psychiatry [Internet]. 2020;28(7):712–21. Available from: https://doi.org/10.1016/j.jagp.2020.04.010
  • 28. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J Neurol Neurosurg Psychiatry. 1999;66(2):137–47.
  • 29. Greig NH, Lahiri DK, Sambamurti K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int Psychogeriatrics. 2002;14(SUPPL. 1):77–91.
  • 30. García-Ayllón MS, Small DH, Avila J, Sáez-Valero J. Revisiting the role of acetylcholinesterase in Alzheimer­s disease: Cross-talk with β-tau and p-amyloid. Front Mol Neurosci. 2011;4(SEP):1–9.
  • 31. Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep. 2019;20(2):1479–87.
  • 32. Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease (review). Biomed Reports. 2016;4(5):519–22.
  • 33. Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J Alzheimer’s Dis. 2017;57(4):1105–21.
  • 34. Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta - Mol Basis Dis. 2012;1822(5):625–30.
  • 35. Kachalova G, Decker K, Holt A, Bartunik HD. Crystallographic snapshots of the complete reaction cycle of nicotine degradation by an amine oxidase of the monoamine oxidase (MAO) family. Proc Natl Acad Sci U S A. 2011;108(12):4800–5.
  • 36. Fiedorowicz JG, Swartz KL. The role of monoamine oxidase inhibitors in current psychiatric practice. J Psychiatr Pract. 2004;10(4):239–48.
  • 37. Rendu F, Peoc’h K, Berlin I, Thomas D, Launay JM. Smoking related diseases: The central role of monoamine oxidase. Int J Environ Res Public Health. 2011;8(1):136–47.
  • 38. Sadaoui N, Bec N, Barragan-Montero V, Kadri N, Cuisinier F, Larroque C, et al. The essential oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and its effect on the cholinesterase and monoamine oxidase activities. Fitoterapia [Internet]. 2018;130(June):1–5. Available from: https://doi.org/10.1016/j.fitote.2018.07.015
  • 39. Duncan J, Johnson S, Ou XM. Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov Ther. 2012;6(3):112–22.
  • 40. Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60(13–14):1527–33.
  • 41. Lee HW, Ryu HW, Kang MG, Park D, Lee H, Shin HM, et al. Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int J Biol Macromol [Internet]. 2017;97:598–605. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.01.080
  • 42. Maggiorani D, Manzella N, Edmondson DE, Mattevi A, Parini A, Binda C, et al. Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing. Oxid Med Cell Longev. 2017;2017(3).
  • 43. Leng J, Qin HL, Zhu K, Jantan I, Hussain MA, Sher M, et al. Evaluation of multifunctional synthetic tetralone derivatives for treatment of Alzheimer’s disease. Chem Biol Drug Des. 2016;88(6):889–98.
  • 44. Gaweska H, Fitzpatrick PF. Structures and mechanism of the monoamine oxidase family. Biomol Concepts. 2011;2(5):365–77.
  • 45. Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimer’s Res Ther. 2017;9(1):1–19.
  • 46. Xie SS, Wang X, Jiang N, Yu W, Wang KDG, Lan JS, et al. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur J Med Chem [Internet]. 2015;95:153–65. Available from: http://dx.doi.org/10.1016/j.ejmech.2015.03.040
  • 47. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2006;26(35):9047–56.
  • 48. Ege T. The Pharmacological and Therapeutic Potentials of Epilobium hirsutum L. Int J Pharm Sci Rev Res. 2019;57(2):20–3.
  • 49. Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: From chemistry to biology. Molecules. 2009;14(6):2202–11.
  • 50. Chimenti F, Cottiglia F, Bonsignore L, Casu L, Casu M, Floris C, et al. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: Extraction, biological analysis, and computational study. J Nat Prod. 2006;69(6):945–9.
  • 51. Lee MH, Lin RD, Shen LY, Yang LL, Yen KY, Hou WC. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J Agric Food Chem. 2001;49(11):5551–5.
  • 52. Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des. 2006;67(1):27–37.
  • 53. Mazzio EA, Harris N, Soliman KFA. Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med. 1998;64(7):603–6.
  • 54. Zhou CX, Kong LD, Ye WC, Cheng CHK, Tan RX. Veratrum taliense. 2001;67:158–61.
  • 55. Khatri D, Juvekar A. Kinetics of inhibition of monoamine oxidase using curcumin and ellagic acid. Pharmacogn Mag. 2016;12(46):116.
  • 56. Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016;2(3).
  • 57. Lee HW, Kim YJ, Nam SJ, Kim H. Potent selective inhibition of monoamine oxidase a by alternariol monomethyl ether isolated from alternaria brassicae. J Microbiol Biotechnol. 2017;27(2):316–20.
  • 58. Ji HF, Shen L. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. ScientificWorldJournal. 2012;2012.
  • 59. Varma AK, Patil R, Das S, Stanley A, Yadav L, Sudhakar A. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of Drug-Designing. PLoS One. 2010;5(8).
  • 60. Alok S, Jain SK, Verma A, Kumar M, Mahor A, Sabharwal M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pacific J Trop Dis. 2013;3(3):242–51.
  • 61. Ojo OA, Afon AA, Ojo AB, Ajiboye BO, Okesola MA, Aruleba RT, et al. Spondias mombim L. (Anacardiaceae): Chemical fingerprints, inhibitory activities, and molecular docking on key enzymes relevant to erectile dysfunction and Alzheimer’s diseases. J Food Biochem. 2019;43(3):1–17.
  • 62. Shakir MA. The effect of Aloe Vera extract on Acetylcholinesterase AchE and Monoamine Oxidase MAO enzymes. Al-Mustansiriyah J Sci. 2018;29(4):88–92.
  • 63. PANG XC, KANG D, FANG JS, ZHAO Y, XU LJ, LIAN WW, et al. Network pharmacology-based analysis of Chinese herbal Naodesheng formula for application to Alzheimer’s disease. Chin J Nat Med. 2018;16(1):53–62.
  • 64. Dar A, Khatoon S, Rahman G, Atta-Ur-Rahman. Anti-depressant activities of Areca catechu fruit extract. Phytomedicine. 1997;4(1):41–5.
  • 65. Kannan R, Sivaraman D, Muralidharan P, Deepakvenkataraman N. Neuroprotective effect of hydroalcoholic extract of areca catechu linn on β-amyloid (25-35) induced cognitive dysfunction in mice. Int J Res Ayurveda Pharm. 2013;4(5):747–53.
  • 66. Khan S, Abbas G, Ahmed FS, Atta-Ur-Rahman, Dar A. Effect of dichloromethane fraction of Areca catechu nut on monoamines associated behaviors and tyramine pressor sensitivity in rodents. Pak J Pharm Sci. 2014;27(2):303–7.
  • 67. Akıncıoğlu, H., Akbaş, M. and Aydın T. Determination of Inhibition Effect of Plantago Major Plant Extract on Monoamine Oxidase Isoenzymes (MAO-A and MAO-B). In: 4th INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL & APPLIED SCIENCES. 2019.
  • 68. Rojas C, Rojas-Castañeda J, Rojas P. Antioxidant properties of a Ginkgo biloba leaf extract (EGb 761) in animal models of Alzheimer’s and Parkinson’s diseases. Curr Top Nutraceutical Res. 2016;14(1):1–16.
  • 69. Pardon MC, Joubert C, Perez-Diaz F, Christen Y, Launay JM, Cohen-Salmon C. In vivo regulation of cerebral monoamine oxidase activity in senescent controls and chronically stressed mice by long-term treatment with Ginkgo biloba extrac3t (EGb 761). Mech Ageing Dev. 2000;113(3):157–68.
  • 70. Hwang KH. Monoamine oxidase inhibitory activities of Korean medicinal plants classified to cold drugs by the theory of KIMI. Food Sci Biotechnol. 2003;12:238–41.
  • 71. Park, T. K. and Hwang KH. Inhibitory activity of the fruit extract of Gardenia jasminoides on monoamine oxidase. Korean J Pharmacogn. 2007;38:108–12.
  • 72. Kim JH, Kim GH, Hwang KH. Monoamine oxidase and dopamine β-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomol Ther. 2012;20(2):214–9.
  • 73. Pitchai D, Manikkam R, Rajendran SR, Pitchai G. Database on pharmacophore analysis of active principles, from medicinal plants. Bioinformation. 2010;5(2):43–5.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm DERLEME MAKALELER
Yazarlar

Tuba Ege 0000-0003-1574-171X

Hayriye Şelimen Bu kişi benim 0000-0002-3533-3628

Yayımlanma Tarihi 28 Şubat 2021
Gönderilme Tarihi 10 Kasım 2020
Kabul Tarihi 27 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

Vancouver Ege T, Şelimen H. Monoamine Oxidase Inhibitory Effects of Medicinal Plants in Management of Alzheimer’s Disease. JOTCSA. 2021;8(1):239-48.