Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 2, 585 - 592, 31.05.2021
https://doi.org/10.18596/jotcsa.784065

Öz

Kaynakça

  • 1. Korkmaz N, Ceylan Y, Hamid A, Karadağ A, Bülbül AS, Aftab MN, Şen F, Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. Journal of Drugs Delivery Science and Technology, 59, (2020) 101864, 1-7.
  • 2. Whitesides GM. The 'right' size in nanobiotechnology. Nature Biotechnology. 2003; 21 (10): 1161-1165.
  • 3. Korkmaz N, Berkil Akar K, İmamoğlu R, Kısa D, Karadağ A, Synthesis of silver nanowires in a two-phase system for biological Applications. Applied Organometallic Chemistry, 2021; e6213.
  • 4. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 2002; 3 (5): 461–463
  • 5. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointer 2003; 28 (4): 313–318.
  • 6. Kumar V, Yadav SK. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental Clean Technology 2009; 84 (2): 151-157.
  • 7. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R. Extracellular biosynthesis of gold nanoparticles using Aspergillus niger – its characterization and stability. Chemical Engineering & Technology 2009; 32 (7): 1036–1041.
  • 8. Das SK, Das AR, Guha AK. Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 2009; 25 (14): 8192–8199.
  • 9. Kalishwaralal K, Deepak VS, Kumar PR, Gurunathan S. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 2009; 100 (21): 5356–5358.
  • 10. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathmaniKanth S, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerf 2010; 77 (2): 257–262.
  • 11. Klaus T, Joerger R, Olsson E, Granqvist CG, Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA, 1999; 96 (24): 13611–13614.
  • 12. Sharma SN, Srivastava R, Silver oxide nanoparticles synthesized by green method from Artocarpus Hetrophyllus for antibacterial and antimicrobial applications, Materials Today: Proceedings, 2020.
  • 13. Muruganatham N, Givindharaju R, Jayaseelan R, Sundararajan G. Green synthesis and characterization of silver oxide nanoparticles using plant extract. J. Appl. Sci. Comp, 2019; 6, 987-1004.
  • 14. S. Ravichandran, V. Paluri, G. Kumar, K. Loganathan, B.R. Kokati Venkata, A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential, Journal of Experimental Nanoscience, 11 (2016) 445-458.
  • 15. B.N. Rashmi, S.F. Harlapur, B. Avinash, C.R. Ravikumar, H.P. Nagaswarupa, M.A. Kumar, K. Gurushantha, M.S. Santosh, Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies, Inorganic Chemistry Communications, 111 (2020) 107580.
  • 16. R. Li, Z. Chen, N. Ren, Y. Wang, Y. Wang, F. Yu, Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care, Journal of Photochemistry and Photobiology B: Biology, 199 (2019) 111593.
  • 17. C. Ashokraja, M. Sakar, S. Balakumar, A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles, Materials Research Express, 4 (2017) 105406.
  • 18. A. Shah, S. Haq, W. Rehman, M. Waseem, S. Shoukat, M. ur Rehman, Photocatalytic and antibacterial activities of paeonia emodi mediated silver oxide nanoparticles, Materials Research Express, 6 (2019) 045045.
  • 19. Z. Khatun, R.S. Lawrence, M. Jalees, K. Lawerence, Green synthesis and Anti-bacterial activity of Silver Oxide nanoparticles prepared from Pinus longifolia leaves extract, International Journal, 3 (2015) 337-343.
  • 20. Kumar A, Chisti Y, Banerjee U. Synthesis of metallic nanoparticles using plant extracts: Biotechnology Advances 2013; 31: 346–356
  • 21. Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology 2005; 3 (1): 8.
  • 22. Korkmaz N. Antibacterial Activity and Biofilm Property of Silver Nanoparticles Synthesized by Using Saintpaulia Aqueous Leaf Extract, Journal of the Institute of Science and Technology 2019; 9 (4): 2225-2234. doi: 10.21597/jist.561197
  • 23. Korkmaz N, Ceylan Y, Karadağ A, Bülbül AS, Aftab MN, et al. Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities. Journal of Pharmaceutical and Biomedical Analysis 2020; 179 (112993): 1-8. doi:10.1016/j.jpba.2019.112993
  • 24. Ando S, Hioki T, Yamada T, Watanabe N, Higashitani A. Ag2O3 clathrate is a novel and effective antimicrobial agent. Journal of Materials Science 2012; 47 (6): 2928-2931. doi: 10.1007/s10853-011-6125-0
  • 25. Stevens PF, Rhododendron L. Davis PH (Ed.). Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Edinburgh, 1978; 6: 90–94.
  • 26. Avcı M, Ormangülleri (Rhododendron L.) Ve Türkiye'deki Doğal Yayılışları. Coğrafya Dergisi. 2004(12): 13–29.
  • 27. Yesilada E, Sezik E, Honda G, Takasihi Y, Takeda Y. et al. Traditional medicine in Turkey IX. Folk medicine in Noth-West Anatolia. Journal of Ethnopharmacology 1999; 64: 195–210.
  • 28. Baytop T. Therapy with Medicinal Plants in Turkey: Past and Present, Second edition. Nobel Tıp Kitabevleri, Istanbul. 1999.
  • 29. Semaltianos NG, Perrie W, Romani S, Potter RJ, Dearden G. Watkins, Polymer-nanoparticle composites composed of PEDOT: PSS and nanoparticles of Ag synthesised by laser ablation. Colloid and Polymer Science, 2012; 290: 213-220.
  • 30. Suzuki RO, Ogawa T, Ono K. Use of ozone to prepare silver oxides. Journal of the American Ceramic Society, 1999; 82(8): 2033-2038.
  • 31. Sajti CL, Sattari R, Chichkov BN, Barcikowski S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. The Journal of Physical Chemistry 2010; 114 (6): 2421-2427.
  • 32. Yong NL, Ahmad A, Mohammad AW. Synthesis and characterization of silver oxide nanoparticles by a novel method. International Journal of Scientific & Engineering Research, 2013; 4:155-158.

Microwave Assisted Green Synthesis of Ag, Ag2O, and Ag2O3 Nanoparticles

Yıl 2021, Cilt: 8 Sayı: 2, 585 - 592, 31.05.2021
https://doi.org/10.18596/jotcsa.784065

Öz

In this study, nanoparticles containing Ag, Ag2O, and Ag2O3 mixture were synthesized by using a microwave-assisted green synthesis method. For the reduction of Ag+ to Ag0, Rhododendron ponticum plant extract was used while the microwave synthesis method was used for the formation of silver oxides. Nanoparticles synthesized under 90 °C, 450 W, and 30-minute microwave synthesis conditions were characterized by UV-Vis, XRD, and STEM. As a result of characterization, Ag-NPs were found to show maximum absorbance peak at 432 nm in the UV-Vis spectrum, crystallite size was 46 nm according to XRD analysis, and nanoparticles showed in a spherical homogeneous distribution by STEM analysis. Our results showed that the phytochemicals in the plant extract of R. ponticum reduce Ag+ ions to Ag-NPs and that the mixture of silver and silver oxide can be synthesized quickly and easily with microwave heating support. This study is important to increase the use of Ag2O and Ag2O3 nanoparticles in industrial production and medical applications. In particular, nanoparticles of silver and silver(I) oxide show great promise for widespread usage in medical polymers and nanodrugs. Because in this study, toxic chemicals were not used in the synthesis of silver oxide nanoparticles and it is a safe synthesis because there is no risk of explosion.

Kaynakça

  • 1. Korkmaz N, Ceylan Y, Hamid A, Karadağ A, Bülbül AS, Aftab MN, Şen F, Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. Journal of Drugs Delivery Science and Technology, 59, (2020) 101864, 1-7.
  • 2. Whitesides GM. The 'right' size in nanobiotechnology. Nature Biotechnology. 2003; 21 (10): 1161-1165.
  • 3. Korkmaz N, Berkil Akar K, İmamoğlu R, Kısa D, Karadağ A, Synthesis of silver nanowires in a two-phase system for biological Applications. Applied Organometallic Chemistry, 2021; e6213.
  • 4. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 2002; 3 (5): 461–463
  • 5. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointer 2003; 28 (4): 313–318.
  • 6. Kumar V, Yadav SK. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental Clean Technology 2009; 84 (2): 151-157.
  • 7. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R. Extracellular biosynthesis of gold nanoparticles using Aspergillus niger – its characterization and stability. Chemical Engineering & Technology 2009; 32 (7): 1036–1041.
  • 8. Das SK, Das AR, Guha AK. Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 2009; 25 (14): 8192–8199.
  • 9. Kalishwaralal K, Deepak VS, Kumar PR, Gurunathan S. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 2009; 100 (21): 5356–5358.
  • 10. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathmaniKanth S, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerf 2010; 77 (2): 257–262.
  • 11. Klaus T, Joerger R, Olsson E, Granqvist CG, Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA, 1999; 96 (24): 13611–13614.
  • 12. Sharma SN, Srivastava R, Silver oxide nanoparticles synthesized by green method from Artocarpus Hetrophyllus for antibacterial and antimicrobial applications, Materials Today: Proceedings, 2020.
  • 13. Muruganatham N, Givindharaju R, Jayaseelan R, Sundararajan G. Green synthesis and characterization of silver oxide nanoparticles using plant extract. J. Appl. Sci. Comp, 2019; 6, 987-1004.
  • 14. S. Ravichandran, V. Paluri, G. Kumar, K. Loganathan, B.R. Kokati Venkata, A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential, Journal of Experimental Nanoscience, 11 (2016) 445-458.
  • 15. B.N. Rashmi, S.F. Harlapur, B. Avinash, C.R. Ravikumar, H.P. Nagaswarupa, M.A. Kumar, K. Gurushantha, M.S. Santosh, Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies, Inorganic Chemistry Communications, 111 (2020) 107580.
  • 16. R. Li, Z. Chen, N. Ren, Y. Wang, Y. Wang, F. Yu, Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care, Journal of Photochemistry and Photobiology B: Biology, 199 (2019) 111593.
  • 17. C. Ashokraja, M. Sakar, S. Balakumar, A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles, Materials Research Express, 4 (2017) 105406.
  • 18. A. Shah, S. Haq, W. Rehman, M. Waseem, S. Shoukat, M. ur Rehman, Photocatalytic and antibacterial activities of paeonia emodi mediated silver oxide nanoparticles, Materials Research Express, 6 (2019) 045045.
  • 19. Z. Khatun, R.S. Lawrence, M. Jalees, K. Lawerence, Green synthesis and Anti-bacterial activity of Silver Oxide nanoparticles prepared from Pinus longifolia leaves extract, International Journal, 3 (2015) 337-343.
  • 20. Kumar A, Chisti Y, Banerjee U. Synthesis of metallic nanoparticles using plant extracts: Biotechnology Advances 2013; 31: 346–356
  • 21. Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology 2005; 3 (1): 8.
  • 22. Korkmaz N. Antibacterial Activity and Biofilm Property of Silver Nanoparticles Synthesized by Using Saintpaulia Aqueous Leaf Extract, Journal of the Institute of Science and Technology 2019; 9 (4): 2225-2234. doi: 10.21597/jist.561197
  • 23. Korkmaz N, Ceylan Y, Karadağ A, Bülbül AS, Aftab MN, et al. Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities. Journal of Pharmaceutical and Biomedical Analysis 2020; 179 (112993): 1-8. doi:10.1016/j.jpba.2019.112993
  • 24. Ando S, Hioki T, Yamada T, Watanabe N, Higashitani A. Ag2O3 clathrate is a novel and effective antimicrobial agent. Journal of Materials Science 2012; 47 (6): 2928-2931. doi: 10.1007/s10853-011-6125-0
  • 25. Stevens PF, Rhododendron L. Davis PH (Ed.). Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Edinburgh, 1978; 6: 90–94.
  • 26. Avcı M, Ormangülleri (Rhododendron L.) Ve Türkiye'deki Doğal Yayılışları. Coğrafya Dergisi. 2004(12): 13–29.
  • 27. Yesilada E, Sezik E, Honda G, Takasihi Y, Takeda Y. et al. Traditional medicine in Turkey IX. Folk medicine in Noth-West Anatolia. Journal of Ethnopharmacology 1999; 64: 195–210.
  • 28. Baytop T. Therapy with Medicinal Plants in Turkey: Past and Present, Second edition. Nobel Tıp Kitabevleri, Istanbul. 1999.
  • 29. Semaltianos NG, Perrie W, Romani S, Potter RJ, Dearden G. Watkins, Polymer-nanoparticle composites composed of PEDOT: PSS and nanoparticles of Ag synthesised by laser ablation. Colloid and Polymer Science, 2012; 290: 213-220.
  • 30. Suzuki RO, Ogawa T, Ono K. Use of ozone to prepare silver oxides. Journal of the American Ceramic Society, 1999; 82(8): 2033-2038.
  • 31. Sajti CL, Sattari R, Chichkov BN, Barcikowski S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. The Journal of Physical Chemistry 2010; 114 (6): 2421-2427.
  • 32. Yong NL, Ahmad A, Mohammad AW. Synthesis and characterization of silver oxide nanoparticles by a novel method. International Journal of Scientific & Engineering Research, 2013; 4:155-158.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Nesrin Korkmaz 0000-0002-7896-1042

Ahmet Karadağ Bu kişi benim 0000-0003-4676-683X

Yayımlanma Tarihi 31 Mayıs 2021
Gönderilme Tarihi 22 Ağustos 2020
Kabul Tarihi 14 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

Vancouver Korkmaz N, Karadağ A. Microwave Assisted Green Synthesis of Ag, Ag2O, and Ag2O3 Nanoparticles. JOTCSA. 2021;8(2):585-92.