Research Article
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 2, 651 - 658, 31.05.2021
https://doi.org/10.18596/jotcsa.878495

Abstract

References

  • 1. Silva EL da, Reis CA, Vieira HC, Santos JX dos, Nisgoski S, Saul CK, et al. Evaluation Of Poly(Vinyl Alcohol) Addition Effect On Nanofibrillated Cellulose Films Characteristics. CERNE. 2020 Mar;26(1):1–8. Doi: https://doi.org/10.1590/01047760202026012654.
  • 2. Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, et al. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers. 2016 Feb;137:452–8. Doi: https://doi.org/10.1016/j.carbpol.2015.10.093.
  • 3. Haque ANMA, Remadevi R, Wang X, Naebe M. Biodegradable cotton gin trash/poly(vinyl alcohol) composite plastic: Effect of particle size on physicochemical properties. Powder Technology. 2020 Sep;375:1–10. Doi: https://doi.org/10.1016/j.powtec.2020.07.096.
  • 4. Tan B, Ching Y, Poh S, Abdullah L, Gan S. A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol) Based Composites: Application and Opportunity. Polymers. 2015 Nov 2;7(11):2205–22. Doi: https://doi.org/10.3390/polym7111509.
  • 5. Guirguis OW, Moselhey MTH. Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. NS. 2012;04(01):57–67. Doi: https://doi.org/10.4236/ns.2012.41009.
  • 6. Eaysmine S, Haque P, Ferdous T, Gafur MA, Rahman MM. Potato starch-reinforced poly(vinyl alcohol) and poly(lactic acid) composites for biomedical applications. Journal of Thermoplastic Composite Materials. 2016 Nov;29(11):1536–53. Doi: https://doi.org/10.1177/0892705715569824.
  • 7. Julinová M, Kupec J, Alexy P, Hoffmann J, Sedlařík V, Vojtek T, et al. Lignin and starch as potential inductors for biodegradation of films based on poly(vinyl alcohol) and protein hydrolysate. Polymer Degradation and Stability. 2010 Feb;95(2):225–33. Doi: https://doi.org/10.1016/j.polymdegradstab.2009.10.008.
  • 8. Gadhave RV, S. K. V, Mahanwar PA, Gadekar PT. Effect of addition of boric acid on thermo-mechanical properties of microcrystalline cellulose/polyvinyl alcohol blend and applicability as wood adhesive. Journal of Adhesion Science and Technology. 2020 Oct 20;1–15. Doi: https://doi.org/10.1080/01694243.2020.1832775.
  • 9. Awad SA, Khalaf EM. Evaluation of the photostabilizing efficiency of polyvinyl alcohol–zinc chloride composites. Journal of Thermoplastic Composite Materials. 2020 Jan;33(1):69–84. Doi: https://doi.org/10.1177/0892705718804585.
  • 10. Mok CF, Ching YC, Muhamad F, Abu Osman NA, Singh R. Poly(vinyl alcohol)-α-chitin composites reinforced by oil palm empty fruit bunch fiber-derived nanocellulose. International Journal of Polymer Analysis and Characterization. 2017 May 19;22(4):294–304. Doi: https://doi.org/10.1080/1023666X.2017.1288345.
  • 11. Jensen B, Kepley W, Guarner J, Anderson K, Anderson D, Clairmont J, et al. Comparison of Polyvinyl Alcohol Fixative with Three Less Hazardous Fixatives for Detection and Identification of Intestinal Parasites. Journal of Clinical Microbiology. 2000;38(4):1592–8. Doi: https://doi.org/10.1128/JCM.38.4.1592-1598.2000.
  • 12. Oviedo IR, Méndez NAN, Gómez MPG, Rodríguez HC, Martínez AR. Design of a Physical and Nontoxic Crosslinked Poly(Vinyl Alcohol) Hydrogel. International Journal of Polymeric Materials. 2008 Oct 13;57(12):1095–103. Doi: https://doi.org/10.1080/00914030802341661.
  • 13. Kobayashi M, Hyu HS. Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants. Materials. 2010 Apr 14;3(4):2753–71. Doi: https://doi.org/10.3390/ma3042753.
  • 14. Pervez Md, Stylios G. Investigating the Synthesis and Characterization of a Novel “Green” H2O2-Assisted, Water-Soluble Chitosan/Polyvinyl Alcohol Nanofiber for Environmental End Uses. Nanomaterials. 2018 Jun 1;8(6):395. https://doi.org/10.3390/nano8060395.
  • 15. Salleh MSN, Nor NNM, Mohd N, Draman SFS. Water resistance and thermal properties of polyvinyl alcohol-starch fiber blend film. In İstanbul, Turkey; 2017 [cited 2021 May 7]. p. 020045. Available from: http://aip.scitation.org/doi/abs/10.1063/1.4975460
  • 16. Wan W, Bannerman AD, Yang L, Mak H. Poly(Vinyl Alcohol) Cryogels for Biomedical Applications. In: Okay O, editor. Polymeric Cryogels [Internet]. Cham: Springer International Publishing; 2014 [cited 2021 May 7]. p. 283–321. (Advances in Polymer Science; vol. 263). Available from: http://link.springer.com/10.1007/978-3-319-05846-7_8
  • 17. Awad SA, Khalaf EM. Investigation of Photodegradation Preventing of Polyvinyl Alcohol/Nanoclay Composites. J Polym Environ. 2019 Sep;27(9):1908–17. Doi: https://doi.org/10.1007/s10924-019-01470-7.
  • 18. Imam SH, Cinelli P, Gordon SH, Chiellini E. Characterization of Biodegradable Composite Films Prepared from Blends of Poly(Vinyl Alcohol), Cornstarch, and Lignocellulosic Fiber. J Polym Environ. 2005 Jan;13(1):47–55. Doi: https://doi.org/10.1007/s10924-004-1215-6.
  • 19. Awad SA, Khalaf EM. Investigation of improvement of properties of polypropylene modified by nano silica composites. 2019; 12: 59-63. Doi: https://doi.org/10.1016/j.coco.2018.12.008.
  • 20. Lawton JW, Fanta GF. Glycerol-plasticized films prepared from starch—poly(vinyl alcohol) mixtures: effect of poly(ethylene-co-acrylic acid). Carbohydrate Polymers. 1994 Jan;23(4):275–80. Doi: https://doi.org/10.1016/0144-8617(94)90190-2.
  • 21. Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P. Modification of Nanocellulose with a Xyloglucan–RGD Conjugate Enhances Adhesion and Proliferation of Endothelial Cells: Implications for Tissue Engineering. Biomacromolecules. 2007 Dec 1;8(12):3697–704. Doi: https://doi.org/10.1021/bm070343q.
  • 22. Awad SA. Mechanical and thermal characterisations of low-density polyethylene/nanoclay composites. Polymers and Polymer Composites 2020: 0967391120968441. Doi: https://doi.org/10.1177/0967391120968441.
  • 23. Awad SA, Khalaf EM. Characterization and modifications of low-density polyethylene-nano cellulose composites. Suranaree Journal of Science&Technology. 2020; 27(1): 1-6.
  • 24. Awad SA, Khalaf EM. Improvement of the chemical, thermal, mechanical and morphological properties of polyethylene terephthalate-graphene particle composites. Bulletin of Materials Science. 2018; 41: 1-6. Doi: https://doi.org/10.1007/s12034-018-1587-1.

Investigation of Chemical Modification and Enzymatic Degradation of Poly(vinyl alcohol)/Hemoprotein Particle Composites

Year 2021, Volume: 8 Issue: 2, 651 - 658, 31.05.2021
https://doi.org/10.18596/jotcsa.878495

Abstract

Polyvinyl alcohol (PVA) composite films with different hemp protein particles (HPP) as additives were successfully synthesized by a solution casting method. The properties of HPP-based PVA composites films were investigated. The characterizations of pure PVA and PVA composite films were performed regarding Fourier transform infrared spectroscopy (FTIR), ultra-violet (UV-Vis) to investigate the chemical properties. The formation of hydrogen bond in the PVA-HPP films, which could improve the compatibility of the two components was investigated by FTIR spectroscopy and UV-Vis analysis. The overall results showed that a higher loading of HPP into the PVA matrix improved the chemical interactions significantly. The swelling degree decreased while the water contact angle values increased as the HPP content increased.

References

  • 1. Silva EL da, Reis CA, Vieira HC, Santos JX dos, Nisgoski S, Saul CK, et al. Evaluation Of Poly(Vinyl Alcohol) Addition Effect On Nanofibrillated Cellulose Films Characteristics. CERNE. 2020 Mar;26(1):1–8. Doi: https://doi.org/10.1590/01047760202026012654.
  • 2. Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, et al. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers. 2016 Feb;137:452–8. Doi: https://doi.org/10.1016/j.carbpol.2015.10.093.
  • 3. Haque ANMA, Remadevi R, Wang X, Naebe M. Biodegradable cotton gin trash/poly(vinyl alcohol) composite plastic: Effect of particle size on physicochemical properties. Powder Technology. 2020 Sep;375:1–10. Doi: https://doi.org/10.1016/j.powtec.2020.07.096.
  • 4. Tan B, Ching Y, Poh S, Abdullah L, Gan S. A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol) Based Composites: Application and Opportunity. Polymers. 2015 Nov 2;7(11):2205–22. Doi: https://doi.org/10.3390/polym7111509.
  • 5. Guirguis OW, Moselhey MTH. Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. NS. 2012;04(01):57–67. Doi: https://doi.org/10.4236/ns.2012.41009.
  • 6. Eaysmine S, Haque P, Ferdous T, Gafur MA, Rahman MM. Potato starch-reinforced poly(vinyl alcohol) and poly(lactic acid) composites for biomedical applications. Journal of Thermoplastic Composite Materials. 2016 Nov;29(11):1536–53. Doi: https://doi.org/10.1177/0892705715569824.
  • 7. Julinová M, Kupec J, Alexy P, Hoffmann J, Sedlařík V, Vojtek T, et al. Lignin and starch as potential inductors for biodegradation of films based on poly(vinyl alcohol) and protein hydrolysate. Polymer Degradation and Stability. 2010 Feb;95(2):225–33. Doi: https://doi.org/10.1016/j.polymdegradstab.2009.10.008.
  • 8. Gadhave RV, S. K. V, Mahanwar PA, Gadekar PT. Effect of addition of boric acid on thermo-mechanical properties of microcrystalline cellulose/polyvinyl alcohol blend and applicability as wood adhesive. Journal of Adhesion Science and Technology. 2020 Oct 20;1–15. Doi: https://doi.org/10.1080/01694243.2020.1832775.
  • 9. Awad SA, Khalaf EM. Evaluation of the photostabilizing efficiency of polyvinyl alcohol–zinc chloride composites. Journal of Thermoplastic Composite Materials. 2020 Jan;33(1):69–84. Doi: https://doi.org/10.1177/0892705718804585.
  • 10. Mok CF, Ching YC, Muhamad F, Abu Osman NA, Singh R. Poly(vinyl alcohol)-α-chitin composites reinforced by oil palm empty fruit bunch fiber-derived nanocellulose. International Journal of Polymer Analysis and Characterization. 2017 May 19;22(4):294–304. Doi: https://doi.org/10.1080/1023666X.2017.1288345.
  • 11. Jensen B, Kepley W, Guarner J, Anderson K, Anderson D, Clairmont J, et al. Comparison of Polyvinyl Alcohol Fixative with Three Less Hazardous Fixatives for Detection and Identification of Intestinal Parasites. Journal of Clinical Microbiology. 2000;38(4):1592–8. Doi: https://doi.org/10.1128/JCM.38.4.1592-1598.2000.
  • 12. Oviedo IR, Méndez NAN, Gómez MPG, Rodríguez HC, Martínez AR. Design of a Physical and Nontoxic Crosslinked Poly(Vinyl Alcohol) Hydrogel. International Journal of Polymeric Materials. 2008 Oct 13;57(12):1095–103. Doi: https://doi.org/10.1080/00914030802341661.
  • 13. Kobayashi M, Hyu HS. Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants. Materials. 2010 Apr 14;3(4):2753–71. Doi: https://doi.org/10.3390/ma3042753.
  • 14. Pervez Md, Stylios G. Investigating the Synthesis and Characterization of a Novel “Green” H2O2-Assisted, Water-Soluble Chitosan/Polyvinyl Alcohol Nanofiber for Environmental End Uses. Nanomaterials. 2018 Jun 1;8(6):395. https://doi.org/10.3390/nano8060395.
  • 15. Salleh MSN, Nor NNM, Mohd N, Draman SFS. Water resistance and thermal properties of polyvinyl alcohol-starch fiber blend film. In İstanbul, Turkey; 2017 [cited 2021 May 7]. p. 020045. Available from: http://aip.scitation.org/doi/abs/10.1063/1.4975460
  • 16. Wan W, Bannerman AD, Yang L, Mak H. Poly(Vinyl Alcohol) Cryogels for Biomedical Applications. In: Okay O, editor. Polymeric Cryogels [Internet]. Cham: Springer International Publishing; 2014 [cited 2021 May 7]. p. 283–321. (Advances in Polymer Science; vol. 263). Available from: http://link.springer.com/10.1007/978-3-319-05846-7_8
  • 17. Awad SA, Khalaf EM. Investigation of Photodegradation Preventing of Polyvinyl Alcohol/Nanoclay Composites. J Polym Environ. 2019 Sep;27(9):1908–17. Doi: https://doi.org/10.1007/s10924-019-01470-7.
  • 18. Imam SH, Cinelli P, Gordon SH, Chiellini E. Characterization of Biodegradable Composite Films Prepared from Blends of Poly(Vinyl Alcohol), Cornstarch, and Lignocellulosic Fiber. J Polym Environ. 2005 Jan;13(1):47–55. Doi: https://doi.org/10.1007/s10924-004-1215-6.
  • 19. Awad SA, Khalaf EM. Investigation of improvement of properties of polypropylene modified by nano silica composites. 2019; 12: 59-63. Doi: https://doi.org/10.1016/j.coco.2018.12.008.
  • 20. Lawton JW, Fanta GF. Glycerol-plasticized films prepared from starch—poly(vinyl alcohol) mixtures: effect of poly(ethylene-co-acrylic acid). Carbohydrate Polymers. 1994 Jan;23(4):275–80. Doi: https://doi.org/10.1016/0144-8617(94)90190-2.
  • 21. Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P. Modification of Nanocellulose with a Xyloglucan–RGD Conjugate Enhances Adhesion and Proliferation of Endothelial Cells: Implications for Tissue Engineering. Biomacromolecules. 2007 Dec 1;8(12):3697–704. Doi: https://doi.org/10.1021/bm070343q.
  • 22. Awad SA. Mechanical and thermal characterisations of low-density polyethylene/nanoclay composites. Polymers and Polymer Composites 2020: 0967391120968441. Doi: https://doi.org/10.1177/0967391120968441.
  • 23. Awad SA, Khalaf EM. Characterization and modifications of low-density polyethylene-nano cellulose composites. Suranaree Journal of Science&Technology. 2020; 27(1): 1-6.
  • 24. Awad SA, Khalaf EM. Improvement of the chemical, thermal, mechanical and morphological properties of polyethylene terephthalate-graphene particle composites. Bulletin of Materials Science. 2018; 41: 1-6. Doi: https://doi.org/10.1007/s12034-018-1587-1.
There are 24 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Sameer Awad 0000-0002-9194-719X

Publication Date May 31, 2021
Submission Date February 11, 2021
Acceptance Date May 7, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

Vancouver Awad S. Investigation of Chemical Modification and Enzymatic Degradation of Poly(vinyl alcohol)/Hemoprotein Particle Composites. JOTCSA. 2021;8(2):651-8.